Ph. D. Program in Statistics

The plan of study for the Department of Statistics and Operations Research

Specialization: Statistics

Degree: PH. D. degree of Science

Compulsory courses			
Course Code	Name of course	Unit	
STAT 611	Probability theory I	3	
STAT 621	Statistical Inference I	3	
STAT 622	Statistical Inference II	3	

Optional courses		
Course Code	Name of course	Unit
STAT 612	Probability theory II	3
STAT 613	Stochastic Process II	3
STAT 623	Survival analysis	3
STAT 624	Theory of nonparametric statistics	3
STAT 625	Advanced topics in experimental design	3
STAT 626	Theory of time series	3
STAT 627	Generalized linear models	3
STAT 628	Multivariate analysis	3
STAT 629	Special topics in statistics	3

1

Statistics Course Description

STAT 611 Probability theory I	Credit hours: 3
Probability spaces in the framework of measure theory;	Random variables as measurable
function; Modes of convergence; Dominated convergence	theorem: Distribution functions;
Decomposition of a distribution function; Convergence	of distribution functions; weak
STAT 612 Probability theory II	Credit hours: 3
Summability of independent random variable, laws of large num	mbers, convergence in distribution,
characteristic functions, uniqueness and continuity theorems,	, the Lindeberg-Feller central limit
theorem, degenerate convergence criterion	
STAT 613 Stochastic Processes	Credit hours: 3
Continuous time Markov processes. The Poisson and allied proc	cesses. The kolmogorow equations.
Renewal theory.	
STAT 621 Statistical inference I	Credit hours: 3
STAT 621 Statistical inference I	Credit hours: 3
STAT 621 Statistical inference I Sufficiency, completeness likelihood, multiparameter estimat likelihood estimation: Bayesian estimation: large sample proper	Credit hours: 3 tion; linear estimation; maximum
STAT 621 Statistical inference I Sufficiency, completeness likelihood, multiparameter estimat likelihood estimation; Bayesian estimation; large sample proper	Credit hours: 3 tion; linear estimation; maximum rties and procedures.
STAT 621 Statistical inference I Sufficiency, completeness likelihood, multiparameter estimat likelihood estimation; Bayesian estimation; large sample proper	Credit hours: 3 tion; linear estimation; maximum rties and procedures.
STAT 621 Statistical inference I Sufficiency, completeness likelihood, multiparameter estimat likelihood estimation; Bayesian estimation; large sample proper STAT 622 Statistical inference II	Credit hours:3tion;linear estimation;maximumrties and procedures.Credit hours:3
STAT 621 Statistical inference I Sufficiency, completeness likelihood, multiparameter estimat likelihood estimation; Bayesian estimation; large sample proper STAT 622 Statistical inference II Testing statistical composite hypotheses; invariance principles	Credit hours:3tion; linear estimation; maximum rties and procedures.ties and procedures.Credit hours:3S, Bayesian statistics, large sample
STAT 621 Statistical inference I Sufficiency, completeness likelihood, multiparameter estimat likelihood estimation; Bayesian estimation; large sample proper STAT 622 Statistical inference II Testing statistical composite hypotheses; invariance principles properties and procedures.	Credit hours:3tion; linear estimation; maximum rties and procedures.tion:Credit hours:35, Bayesian statistics, large sample
STAT 621 Statistical inference I Sufficiency, completeness likelihood, multiparameter estimat likelihood estimation; Bayesian estimation; large sample proper STAT 622 Statistical inference II Testing statistical composite hypotheses; invariance principles properties and procedures.	Credit hours:3tion; linear estimation; maximum rties and procedures.Credit hours:3S, Bayesian statistics, large sample
STAT 621 Statistical inference I Sufficiency, completeness likelihood, multiparameter estimat likelihood estimation; Bayesian estimation; large sample proper STAT 622 Statistical inference II Testing statistical composite hypotheses; invariance principles properties and procedures.	Credit hours: 3 tion; linear estimation; maximum rties and procedures. Credit hours: 3 5, Bayesian statistics, large sample
STAT 621 Statistical inference I Sufficiency, completeness likelihood, multiparameter estimat likelihood estimation; Bayesian estimation; large sample proper STAT 622 Statistical inference II Testing statistical composite hypotheses; invariance principles properties and procedures. STAT 623 Survival analysis Theory of analysis of randomly right censored failure time data	Credit hours: 3 tion; linear estimation; maximum ties and procedures. Credit hours: 3 s, Bayesian statistics, large sample Credit hours: 3 a: failure time models, inference in
STAT 621 Statistical inference I Sufficiency, completeness likelihood, multiparameter estimated likelihood estimation; Bayesian estimation; large sample proper STAT 622 Statistical inference II Testing statistical composite hypotheses; invariance principles properties and procedures. STAT 623 Survival analysis Theory of analysis of randomly right censored failure time data parametric models, the propertional bazards model, likelihood	Credit hours: 3 tion; linear estimation; maximum rties and procedures. Credit hours: 3 s, Bayesian statistics, large sample Credit hours: 3 a: failure time models, inference in construction of failure time data
STAT 621 Statistical inference I Sufficiency, completeness likelihood, multiparameter estimat likelihood estimation; Bayesian estimation; large sample proper STAT 622 Statistical inference II Testing statistical composite hypotheses; invariance principles properties and procedures. STAT 623 Survival analysis Theory of analysis of randomly right censored failure time data parametric models, the proportional hazards model, likelihood rank analysis in accelerated failure time models	Credit hours: 3 tion; linear estimation; maximum rties and procedures. Credit hours: 3 5, Bayesian statistics, large sample Credit hours: 3 a: failure time models, inference in a construction of failure time data,
STAT 621 Statistical inference I Sufficiency, completeness likelihood, multiparameter estimated likelihood estimation; Bayesian estimation; large sample proper STAT 622 Statistical inference II Testing statistical composite hypotheses; invariance principles properties and procedures. STAT 623 Survival analysis Theory of analysis of randomly right censored failure time data parametric models, the proportional hazards model, likelihood rank analysis in accelerated failure time models.	Credit hours: 3 tion; linear estimation; maximum ties and procedures. Credit hours: 3 s, Bayesian statistics, large sample Credit hours: 3 a: failure time models, inference in d construction of failure time data,
STAT 621 Statistical inference I Sufficiency, completeness likelihood, multiparameter estimated likelihood estimation; Bayesian estimation; large sample propertions and procedures invariance principles properties and procedures. STAT 623 Survival analysis Theory of analysis of randomly right censored failure time data parametric models, the proportional hazards model, likelihood rank analysis in accelerated failure time models.	Credit hours: 3 tion; linear estimation; maximum rties and procedures. Credit hours: 3 5, Bayesian statistics, large sample Credit hours: 3 a: failure time models, inference in a construction of failure time data,

Theoretical foundations of nonparametric statistics: theory of U-statistics, Noether's theorem and Pitman asymptotic relative efficiently, estimation and hypothesis testing with one and two sample location (scale) models, theory of linear rank statistics, applications to general linear models analyses.

STAT 625 Advanced topics in experimental design Credit hours:

The general pn factorial stem; split-plot experiments, blocking, fractional replication. Quasi factorial or lattice designs. Incomplete block designs - constructions and analysis. Response surface designs - objective, models and criteria. Continuous design theory; optimal design measure and some simple equivalence results. Multiresponse experiments. Designs for non-linear models.

3

STAT 626 Theory of time series	Credit hour	rs: 3
The Ito calculus and stochastic differential equations, stochastic	astic integrals, ergoo	lic theorems. Non-
stationary time series and evolutionary spectra. Prediction,	filtering and contro	l of non-stationary
processes. Nonlinear (bilinear, threshold, and exponential	autoregressive) tir	ne series models.
Special topics in recent time series research.		
Special topics in recent time series research.		
Special topics in recent time series research.		
Special topics in recent time series research.	Credit hour	s: 3
Special topics in recent time series research. STAT 627 Generalized linear models Theory of generalized linear models, quasi-likelihood	Credit hour models, higher	r <mark>s: 3</mark> order asymptotic,

STAT 628 Multivariate analysis	Credit hours:	3
Singular transformations and the generalized Jocobian. The	multivariate normal	distribution,
Wishart distribution, and the U distribution. Distribution of the	latent roots of one W	ishart matrix
in the metric of another. Noncentral counterparts of these d	istributions. Introduct	tion of zonal

_polynomials.			
STAT 629 Special topics in Statistics	Credit hours:	3	

This course offers either some important topics which are not included in other enlisted courses or some special research topics of current research interest.