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Logic is the hygiene the mathematician practices to keep his ideas healthy
and strong

Hermann Weyl
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Our discussion begins with an introduction to the basic building
blocks of logic propositions.

Definition

A proposition (QK
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K) is a declarative sentence (
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is, a sentence that declares a fact). The only statements that are
considered are propositions, which contain no variables.
Propositions are either true or false, but not both.
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Example 1 :
All the following declarative sentences are propositions.

1 Any integer is odd or even.

2 1 + 1 = 2.

3 2 + 2 = 3.
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Examples of non-propositions:

Example 2 :

1 What time is it?

2 x + 1 = 2, (may be true, may not be true, it depends on the
value of x .)

3 x .0 = 0, (always true, but it’s still not a proposition because
of the variable.)

4 x .0 = 1, (always false, but not a proposition because of the
variable.)
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The truth value of a proposition is true, denoted by T , if it is a
true proposition, and the truth value of a proposition is false,
denoted by F , if it is a false proposition. The area of logic that
deals with propositions is called the propositional calculus or
propositional logic.
We will use letters such as p, q, r , s, . . . or A,B,C ,D, . . . to
represent propositions. The letters are called logical variables.
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Propositions can be constructed from other propositions using
logical connectives

1 Negation: ¬ (not alternatively −),

2 Conjunction ∧ (and),

3 Disjunction ∨ (or),

4 Implication →
5 Biconditional ↔
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The Negation of a Proposition

Definition

Let p be a proposition. The negation of p, denoted by ¬p (also
denoted by p̄), is the statement “It is not the case that p.” The
proposition ¬p is read “not p.” The truth value of the negation of
p, ¬p, is the opposite of the truth value of p.
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Example 3 :
The negation of the proposition “Badr’s PC runs Linux “
The negation is:
“It is not the case that Badr’s PC runs Linux.” This negation can
be more simply expressed as “Badr’s PC does not run Linux.”

The Truth Table for the Negation of a Proposition.

p ¬p
T F

F T
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The conjunction of Propositions

Definition

Let p and q be propositions. The conjunction of p and q, denoted
by p ∧ q, is the proposition “p and q.” The conjunction p ∧ q is
true when both p and q are true and is false otherwise.
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The truth table for the conjunction of two propositions.

p q p ∧ q q ∧ p

T T T T

T F F F

F T F F

F F F F
In this case, we will say that the compound propositions p ∧ q and
q ∧ p are equivalent propositions. We also say that the operator ∧
is commutative.
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The disjunction of Propositions

Definition

Let p and q be propositions. The disjunction of p and q, denoted
by p ∨ q, is the proposition “p or q.” The disjunction p ∨ q is false
when both p and q are false and is true otherwise.
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The truth table for the disjunction of two propositions.

p q p ∨ q q ∨ p

T T T T

T F T T

F T T T

F F F F
In this case, we will say that the compound propositions p ∨ q and
q ∨ p are equivalent propositions. We also say that the operator ∨
is commutative.
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The exclusive or of Propositions

Definition

Let p and q be propositions. The exclusive or of p and q, denoted
by p ⊕ q, is the proposition that is true when exactly one of p and
q is true and is false otherwise.
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The truth table for the exclusive “or”

p q p ⊕ q

T T F

T F T

F T T

F F F
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The conditional statement

Definition

Let p and q be propositions. The conditional statement p → q is
the proposition “if p, then q.” The conditional statement p → q is
false when p is true and q is false, and is true otherwise.
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In the conditional statement p → q, p is called the hypothesis (or
antecedent or premise) and q is called the conclusion (or
consequence).
The statement p → q is called a conditional statement because
p → q asserts that q is true on the condition that p holds. A
conditional statement is also called an implication.
When p → q, p is called a sufficient condition for q , q is a
necessary condition for p.
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The statement p → q is true when both p and q are true and
when p is false (no matter what truth value q has). Conditional
statements play such an essential role in mathematical reasoning.

Terminology is used to express p → q.
”if p, then q” ” p implies q”

”if p, q” ”p only if q”

”p is sufficient for q” ”a sufficient condition for q is p”

”q if p” ”q whenever p”

”q when p” ”q is necessary for p”

”a necessary condition for p is q” ”q follows from p”

”q unless ¬p”
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The truth table for the conditional statement p → q of two
propositions.

p q p → q

T T T

T F F

F T T

F F T
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Converse, Contrapositive and Inverse

We can form some new conditional statements starting with a
conditional statement p → q. In particular, there are three related
conditional statements that occur so often that they have special
names.

1 The proposition q → p is called the converse of p → q.

2 The proposition ¬q → ¬p is called the contrapositive of
p → q.

3 The proposition ¬p → ¬q is called the inverse of p → q.

We will see that of these three conditional statements formed from
p → q, only the contrapositive always has the same truth value as
p → q.
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Exercise

What are the contrapositive, the converse, and the inverse of the
conditional statement
“The home team wins whenever it is raining“.

Solution: Because “q whenever p” is one of the ways to express
the conditional statement p → q, the original statement can be
rewritten as:
If it is raining, then the home team wins. Consequently, the
contrapositive is:
If the home team does not win, then it is not raining.
The converse is : If the home team wins, then it is raining.
The inverse is : If it is not raining, then the home team does not
win.
Only the contrapositive is equivalent to the original statement.
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Biconditional Statements

Definition

Let p and q be propositions. The biconditional statement p ↔ q is
the proposition “p if and only if q”. The biconditional statement
p ↔ q is true when p and q have the same truth values, and is
false otherwise. Biconditional statements are also called
bi-implications.
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The biconditional p ↔ q is true when the conditional statements
p → q and q → p are true, and is false otherwise.
That is why we use the words “if and only if” to express this
logical connective and why it is symbolically written by combining
the symbols → and ←.
The last way of expressing the biconditional statement p ↔ q uses
the abbreviation “iff” for “if and only if.”
There are some other common ways to express p ↔ q:
“p is necessary and sufficient for q”
“if p then q”, and conversely if “q then p”.
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The Truth Table for the Biconditional p ↔ q of Two
Propositions..

p q p ↔ q

T T T

T F F

F T F

F F T
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Truth Tables of Compound Propositions

We have now introduced four important logical connectives:
conjunctions, disjunctions, conditional statements, and
biconditional statements as well as negations. We can use these
connectives to build up complicated compound propositions
involving any number of propositional variables. We can use truth
tables to determine the truth values of these compound
propositions.
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Example 4 :
Construction of the truth table of the compound proposition

(p ∨ ¬q)→ (p ∧ q).

Truth Table of (p ∨ ¬q)→ (p ∧ q)

p q ¬q p ∨ ¬q p ∧ q (p ∨ ¬q)→ (p ∧ q)

T T F T T T

T F T T F F

F T F F F T

F F T T F F
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Definition

1 A compound proposition that is always true, no matter what
the truth values of the propositional variables that occur in it,
is called a tautology. You can think of a tautology as a rule
of logic.

2 A compound proposition that is always false is called a
contradiction. In other words, a contradiction is false for
every assignment of truth values to its simple components.

3 A compound proposition that is neither a tautology nor a
contradiction is called a contingency.

We will use T to denote any tautology and F to denote any
contradiction.
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Logical Equivalences

Compound propositions that have the same truth values in all
possible cases are called logically equivalent. We can also define
this notion as follows.

Definition

The compound propositions p and q are called logically equivalent
and denoted p ≡ q if p ↔ q is a tautology.
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Example 5 :
We can construct examples of tautologies and contradictions using
just one propositional variable.
p ∨ ¬p is always true, it is a tautology and p ∧ ¬p is always false,
it is a contradiction.

p ¬p p ∨ ¬p p ∧ ¬p
T F T F

F T T F
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Theorem [De Morgan’s Laws]

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q.

Truth Table of ¬(p ∧ q) ≡ ¬p ∨ ¬q and ¬(p ∨ q) ≡ ¬p ∧ ¬q
p q ¬p ¬q p ∨ q ¬(p ∨ q) ¬p ∧ ¬q p ∧ q ¬(p ∧ q) ¬p ∨ ¬q
T T F F T F F T F F
T F F T T F F F T T
F T T F T F F F T T
F F T T F T T F T T
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Exercise 1 :
Prove that p → q and ¬p ∨ q are logically equivalent.

Solution

Truth Table of p → q ≡ ¬p ∨ q

p q ¬p p → q ¬p ∨ q

T T F T T

T F F F F

F T T T T

F F T T T
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Exercise 2 :
Prove that p → q and ¬q → ¬p are logically equivalent.

Solution

Truth Table of p → q ≡ ¬q → ¬p
p q ¬p ¬q p → q ¬q → ¬p
T T F F T T

T F F T F F

F T T F T T

F F T T T T
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Exercise 3 :
Prove that p ∨ (q ∧ r) and (p ∨ q)∧ (p ∨ r) are logically equivalent.
(This is the distributive law of disjunction over conjunction.)

Solution

Truth Table of p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
p q r q ∧ r p ∨ (q ∧ r) p ∨ q p ∨ r (p ∨ q) ∧ (p ∨ r)
T T T T T T T T
T T F F T T T T
T F T F T T T T
T F F F T T T T
F T T T T T T T
F T F F F T F F
F F T F F F T F
F F F F F F F F
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Exercise 4 :
Prove that p ∧ (q ∨ r) and (p ∧ q)∨ (p ∧ r) are logically equivalent.
(This is the distributive law of conjunction over disjunction.)

Solution

Truth Table of p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
p q r q ∨ r p ∧ (q ∨ r) p ∧ q p ∧ r (p ∧ q) ∨ (p ∧ r)
T T T T T T T T
T T F T T T F T
T F T T T F T T
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F
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Equivalence Name
p ∧ T ≡ p
p ∨ F ≡ p Identity laws
p ∨ T ≡ T
p ∧ F ≡ F Domination laws
p ∨ p ≡ p
p ∧ p ≡ p Idempotent laws
¬(¬p) ≡ p Double negation law

p ∨ q ≡ q ∨ p
p ∧ q ≡ q ∧ p Commutative laws

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r) Associative laws

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) Distributive laws

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q De Morgan’s laws

p ∨ (p ∧ q) ≡ p
p ∧ (p ∨ q) ≡ p Absorption laws
p ∨ ¬p ≡ T
p ∧ ¬p ≡ F Negation laws

Mongi BLEL The Foundations: Logic and Proofs
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Logical equivalences involving conditional statements

1 p → q ≡ ¬p ∨ q

2 p → q ≡ ¬q → ¬p
3 p → (q ∨ r) ≡ (p ∧ ¬q)→ r ≡ (p ∧ ¬r)→ q.

4 (p ∨ q)→ r ≡ (p → r) ∧ (q → r).

5 p → (q → r) ≡ (p ∧ q)→ r .
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Logical equivalences involving biconditional statements

1 p ↔ q ≡ (p → q) ∧ (q → p),

2 p ↔ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q),

3 ¬(p ↔ q) ≡ p ↔ ¬q.
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Exercise

Prove that (p ∧ q)→ (p ∨ q) is a tautology.

Solution

p q p ∧ q p ∨ q (p ∧ q)→ (p ∨ q)
T T T T T
T F F T T
F T F T T
F F F F T

Proof without truth table:

(p ∧ q)→ (p ∨ q) ≡ ¬(p ∧ q) ∨ (p ∨ q)

≡ ¬p ∨ ¬q ∨ p ∨ q

≡ T .
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Exercise

Prove that (p ∧ q) ∧ (¬p ∨ ¬q) is a contradiction.

Solution

p q p ∧ q ¬p ∨ ¬q (p ∧ q) ∧ (¬p ∨ ¬q)
T T T F F
T F F T F
F T F T F
F F F T F

Proof without truth table:

(p ∧ q) ∧ (¬p ∨ ¬q) ≡ (p ∧ q ∧ ¬p) ∨ (p ∧ q ∧ ¬q)
≡ F .

Mongi BLEL The Foundations: Logic and Proofs
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Exercise

Proof without truth table that

1 ¬(p → q) and p ∧ ¬q are logically equivalent,

2 ¬(p ∨ (¬p ∧ q)) and ¬p ∧ ¬q,
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Solution

1

¬(p → q) ≡ ¬(¬p ∨ q)

≡ ¬(¬p) ∧ ¬q
≡ p ∧ ¬q

2

¬(p ∨ (¬p ∧ q)) ≡ ¬p ∧ ¬(¬p ∧ q)

≡ ¬p ∧ [¬(¬p) ∨ ¬q]

≡ ¬p ∧ (p ∨ ¬q)

≡ (¬p ∧ p) ∨ (¬p ∧ ¬q)

≡ F ∨ (¬p ∧ ¬q) ≡ ¬p ∧ ¬q
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Predicates

Definition

A predicate (Y
	
J�Ó)is a statement that contains variables (predicate

variables), and they may be true or false depending on the values
of these variables.

Example 6 :
If P(x) = “x2 is greater than x” is a predicate. It contains one
predicate variable x . If we choose x ∈]0, 1], P(x) is a proposition
always false.
If we choose x ∈]1,+∞[, P(x) is a proposition always true.
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Definition

1 The domain of a predicate variable is the collection of all
possible values that the variable may take.

2 The truth domain of a predicate variable is the set of the
variable that takes the predicate true.
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The Universal Quantifier

Definition

The universal quantification of P(x) is the statement ”P(x) for all
values of x in the domain.”
The notation ∀x ; P(x) denotes the universal quantification of
P(x).
The symbol ∀ is called the universal quantifier.
An element for which P(x) is false is called a counterexample of
∀x ; P(x).
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Example 7 :
This is a formal way to say that for all values that a predicate
variable x can take in a domain D, the predicate is true:

∀x ∈ R, x2 ≥ 0

for all x belonging to the real numbers x2 ≥ 0.

Example 8 :
Let p(x) be the predicate “x > 0”.
If D = N the proposition “∀ x : x > 0” is true.
If D = Z the proposition “∀ x : x > 0” is false.
So, the universal set is important.

Mongi BLEL The Foundations: Logic and Proofs
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The Existential Quantifier

Definition

The existential quantification of P(x) is the proposition
”There exists an element x in the domain such that P(x)”.
We use the notation ∃x ; P(x) for the existential quantification of
P(x).
The symbol ∃ is called the existential quantifier.

Example 9 :
∃x ∈ R, x2 > x .

Mongi BLEL The Foundations: Logic and Proofs
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Truth value of quantified statements

1 ∀x ∈ D, P(x) i.e. P(x) is true for every x ∈ D.
It is false whenever there is at least one x in D for which P(x)
is false.
¬(∀x ∈ D, P(x)) ≡ ∃x ∈ D, ¬(P(x)) i.e. There is one
x ∈ D for which P(x) is false.

Example 10 :
If D = {x1, . . . , xn}, we have the following equivalence:

(∀x ∈ D, P(x)) ≡ (P(x1) ∧ P(x2) ∧ . . . ∧ P(xn)).

¬(∀x ∈ D, P(x)) ≡ ∃j ∈ {1, . . . , n}, ¬P(xj).
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2 ∃x ∈ D, P(x). It is true when P(x) is true for at least one x
in D. It is false when P(x) is false for all x in D.
¬(∃x ∈ D, P(x)) ≡ ∀x ∈ D, ¬(P(x)) i.e. for all x ∈ D, P(x)
is false.

Example 11 :
If D = {x1, . . . , xn}, we have the following equivalence:

(∃x ∈ D, P(x)) ≡ (P(x1) ∨ P(x2) ∨ . . . ∨ P(xn)).

¬(∃x ∈ D, P(x)) ≡ ∀j ∈ {1, . . . , n}, ¬P(xj).
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3 We can similarly assign truth values to combinations of
predicates, or negation of combinations of predicates. The
equivalence

¬(∀x ∈ D, P(x) ∧ Q(x)) ≡ ∃x ∈ D, ¬(P(x) ∧ Q(x)),

or

¬(∀x ∈ D, P(x) ∧ Q(x)) ≡ ∃x ∈ D, ¬P(x) ∨ ¬Q(x).
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How To Determine Truth Value

1 Method of exhaustion
Suppose that the domain D is finite and we want to show
that ∀x ∈ D, P(x) is true. Try all cases.
For example, if D = {−1, 2, 3}, and P(x) = “x2− x − 1 ≥ 0”,
then just compute x2 − x + 1 for all the values of x ∈ D to
conclude that this true or false.

2 Method of case
Suppose you want to show that (∃x ∈ D, P(x)) is true. For
this, we just need to find an x ∈ D for which P(x) is true.
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Example 12 :
To show that “∃x ∈ [−1, 1], x3 = 2x” is true, take x = 0.
Similarly, if to show that ∀ x ∈ [1,+∞[, x3 > 2x is false, it is
enough to find one counterexample. Take x = 1.
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3 Method of logic derivation This method consists of using
logical steps to transform one logical expression into another.

Example 13 :
If D = {x1, . . . xn} and we want to know the truth value of
∃x ∈ D, (P(x) ∨ Q(x)). This is equivalent to the following:

∃x ∈ D, (P(x) ∨ Q(x)) ≡ ∃j ∈ {1, . . . , n}, P(xj) ∨ Q(xj)

≡ (P(x1) ∨ Q(x1)) ∨ . . . ∨ (P(xn) ∨ Q(xn))

≡ (∃x ∈ D, (P(x)) ∨ (∃x ∈ D, Q(x)).

Mongi BLEL The Foundations: Logic and Proofs



Propositional Logic
Logical Equivalences

Predicates and Quantifiers
Proof Techniques

Mathematical Induction

Examples

1 Let P(x) be the statement ”x2 − x + 1 > 0. ” What is the
truth value of the quantification ∀x P(x), where the domain
consists of all real numbers?
P(x) is true for every real number x , because,
P(x) = (x − 1

2)2 + 3
4 .

2 Let Q(x) be the statement ”x2 − 3x + 1 > 0. ” What is the
truth value of the quantification ∀x ; P(x), where the domain
consists of all real numbers?
Q(x) is not true for every real number x , for instance, Q(1) is
false. That is, x = 1 is a counterexample for the statement
∀x ; Q(x). Thus ∀x ; Q(x) is false.
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Examples

Find the negations of the following statements

1 ∀x ; (sin x ≤ x),

2 ∃x ; (sin x = x).

Solution

1 The negation of ∀x ; (sin x ≤ x) is the statement
∃x ; (sin x > x).

2 The negation of ∃x ; (sin x = x) is the statement
∀x ; (sin x 6= x).
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Proof Techniques

Definition

1 A proof is a chain of deductions that establishes the truth of a
statement.

2 A theorem is a statement obtained by a correct deduction or a
sequence of correct deductions (that is, using explicitly the
allowed rules of inference) from logical axioms and, possibly,
other results of the same type already established.

3 A lemma is a “helping theorem” or a result which is needed to
prove a theorem.
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Definition

4 A corollary is a result which follows directly from a theorem.

5 Less important theorems are sometimes called propositions.
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Remarks

1 Many theorems assert that a property holds for all elements in
a domain, such as the integers, the real numbers, or some of
the discrete structures that we will study in this class.

2 Many theorems have the form: ∀x ∈ D; (P(x)→ Q(x)) is
true. To prove, we show that for all arbitrary element c of the
domain, P(c)→ Q(c) is true. So, we must prove something
of the form: p → q is true.
We have two trivial cases
• Trivial Proof: If we know that q is true, then p → q is true
as well.
• Vacuous Proof: If we know that p is false then p → q is
true.
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In which follows we will see how to apply the logic rules to justify
different proof techniques. We will discuss four proof techniques:
Direct proof, proof by induction, proof by contradiction and
proof by contradiction.
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Direct Proof

A direct proof of a conditional statement p → q is constructed
when the first step is the assumption that p is true, subsequent
steps are constructed using rules of inference, with the final step
showing that q must also be true.
A direct proof shows that a conditional statement p → q is true by
showing that if p is true, then q must also be true, so that the
combination p true and q false never occurs. In a direct proof, we
assume that p is true and use axioms, definitions, and previously
proven theorems, together with rules of inference, to show that q
must also be true.
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Example 14 :
Give a direct proof of ”If n is an odd integer, then n2 is odd.”
Solution
Note that the statement is ∀n; (P(n)→ Q(n)), where P(n) is ”n
is an odd integer” and Q(n) is ”n2 is odd.”
We assume that the hypothesis of this conditional statement is
true, namely, we assume that n = 2k + 1 for some k ∈ N.
n2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 is also odd.
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Example 15 :
Give a direct proof that if m and n are both perfect squares, then
nm is also a perfect square.
(An integer a is a perfect square if there is an integer b such that
a = b2.)
Solution
We assume that the hypothesis of this conditional statement is
true, namely, we assume that m = p2 and n = q2. Hence,
mn = p2q2 = (pq)2, then mn is also a perfect square.
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Proof by Contraposition

We need other methods of proving statements of the form
∀x (P(x)→ Q(x)). The method now is to do not start with the
premises and end with the conclusion. This method is called a
indirect proof.
A useful type of indirect proof is known as proof by
contraposition. This method consists to use of the fact that the
conditional statement p → q is equivalent to its contrapositive,
¬q → ¬p. We take ¬q as a premise, and using axioms, definitions,
and previously proven theorems, together with rules of inference, to
show that ¬p is true.
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Example 16 :

1 Prove 3n + 2 is odd, then n is odd.

2 Prove that if n = pq, then p ≤
√
n or q ≤

√
n. (n, p, q ∈ N).

Solutions

1 If n = 2k for some integer k , then
3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1) is even.

2 We assume that the statement (p ≤
√
n) ∨ (q ≤

√
n) is false,

which means that both p >
√
n and q >

√
n are false. Then

n = pq >
√
n
√
n = n which is false.
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Proof by Contradiction

Suppose we want to prove that a statement p is true. Furthermore,
suppose that we can find a contradiction q such that ¬p → q is
true. We conclude that ¬p is false, which means that p is true.

Example 17 :√
2 is irrational.

Assume that
√

2 is rational. There exist integers p and q with√
2 = p

q , where q 6= 0 and p and q have no common factors.
When both sides of this equation are squared, it follows that
2q2 = p2. Hence p2 is even, let p = 2r for some integer r . Thus,
2q2 = 4r2 and q2 = 2r2 and q is even, which is impossible. Then√

2 is irrational.
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Example 18 :
Prove by contradiction that ”if 3n + 2 is odd, then n is odd.”
Let p be ”3n + 2 is odd” and q be ”n is odd.” To construct a
proof by contradiction, assume that both p and ¬q are true. That
is, assume that 3n + 2 is odd and n is even. Then there is k ∈ N
such that n = 2k . This implies that
3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1). We have a
contradiction. This completes the proof by contradiction.
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Example 19 :
Prove that there is no largest prime number.
Assume that there is a largest prime number. Hence, we can list all
the primes p1, . . . , pn. Let

m = p1.p2 . . . .pn − 1.

None of the prime numbers on the list divides m. Therefore, either
m is prime or there is a smaller prime that divides m. This
contradicts the assumption that there is a largest prime.
Therefore, there is no largest prime.
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Proof of Equivalence

To prove a theorem that is a biconditional statement, that is, a
statement of the form p ↔ q, we show that p → q and q → p are
both true. The validity of this approach is based on the tautology
(p ↔ q)↔ (p → q) ∧ (q → p).
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Example 20 :
Prove that n is odd if and only if n2 is odd.”
Let p is ”n is odd” and q is ”n2 is odd.” To prove this result, we
need to show that p → q and q → p are true.
We have already shown that p → q is true.
We prove that q → p by contraposition.
If n is odd, then n = 2k − 1 for some integer k .
n2 = 4k2− 4k + 1 = 2(2k2− 2k) + 1, which proves that q is false.
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Proof by cases

A proof by cases of a mathematical statement should include the
following:

1 Determine all possible cases which must be considered in
order to prove the mathematical statement,

2 write the proof for each case.
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Example 21 :
Prove that 3 does not divide the numbers n2 + 2n− 1 for all n ∈ N.
Case 1: Assume that n = 3k , then n2 + 2n − 1 = 3(3k2 + 2k)− 1
and 3 does not divide n2 + 2n − 1.
Case 2: Assume that n = 3k + 1, then
n2 + 2n − 1 = 3(3k2 + 4k) + 2 and 3 does not divide n2 + 2n − 1.
Case 3: Assume that n = 3k + 2, then
n2 + 2n − 1 = 3(3k2 + 6k + 2) + 1 and 3 does not divide
n2 + 2n − 1.
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Example 22 :
Prove that x + |x − 1| ≥ 1 for all real numbers x .
Case1: Assume that x ≥ 1. Then x − 1 ≥ 0 and |x − 1| = x − 1 ,
so that x + |x − 1| = x + (x − 1) = 2x − 1 ≥ 2− 1 = 1, i.e.,
x + |x − 1| ≥ 1 .
Case2: Assume that x < 1. Then x − 1 < 0 and
|x − 1| = −(x − 1) = 1− x , so that
x + |x − 1| = x + (1− x) = 1, i.e., x + |x − 1| ≥ 1 .
Thus, for all possible cases, it has been proven that
x + |x − 1| ≥ 1.
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Exercise

1 If x is a real number, then |x + 3| − x > 2 .

2 If x is a real number, then |x − 1|+ |x + 5| ≥ 6 .

3 The expression 2m2 − 1 is odd for all integers m .

4 If n is an even integer, then n = 4k or n = 4k − 2 for some
integer k .

5 If a and b are real numbers, then | |a| − |b| | ≤ |a− b| .
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Proof by working backward

A proof by working backward of a mathematical statement should
include the following.

1 Begin with the final result, which must be proven true,

2 work backward step-by-step, writing equivalent statements,
until a connection with the assumptions of the problem.

Example 23 :
Prove that x2 + y2 ≥ 2xy for all real numbers x and y .
x2 + y2 ≥ 2xy is true if and only if x2 + y2− 2xy ≥ 0 is true if and
only if (x − y)2 ≥ 0 which is true. Since the last statement is true,
all of the equivalent statements are true. In particular,
x2 + y2 ≥ 2xy .
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Exercise

Prove the following:

1 The expression x +
9

x
≥ 6 for all real numbers x > 0 .

2 If n3 + 5n + 6 is divisible by 3 for some integer n, then
(n + 1)3 + 5(n + 1) + 6 is divisible by 3.

3 The expression
x4

4
+ (x + 1)3 >

(x + 1)4

4
for all real numbers

x ≥ −1 .

4 There is a fixed positive integer N for which
3

n
<

n − 4

n + 10
for

all integers n ≥ N.
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Mathematical Induction

This proof technique is to prove statements of the form
∀n ∈ N,P(n). We have two steps to do the proof:

1 We show that P(1) is true. (Basis step)

2 Assume that P(n) is true for some n ≥ 1 (induction
hypothesis) and prove that P(n + 1) is then true. (Inductive
step)
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Example 24 :

Sn =
n∑

k=1

(2k − 1)2 =
n(4n2 − 1)

3
.

S1 = 1 and assume that Sn =
n(4n2 − 1)

3
for some n ∈ N.

Sn+1 = Sn + (2n + 1)2 =
n(4n2 − 1)

3
+ (2n + 1)2

= (2n + 1)
n(2n − 1) + 3(2n + 1)

3

=
(n + 1)(4(n + 1)2 − 1)

3
.
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Example 25 :
n∑

k=1

k4 =
n(n + 1)(2n + 1)(3n2 + 3n − 1)

30
.

S1 = 1 and assume that Sn =
n(n + 1)(2n + 1)(3n2 + 3n − 1)

30
for

some n ∈ N.

Sn+1 = Sn + (n + 1)4 =
n(n + 1)(2n + 1)(3n2 + 3n − 1)

30
+ (n + 1)4

= (n + 1)
n(2n + 1)(3n2 + 3n − 1) + 30(n + 1)3

30

=
(n + 1)(n + 2)(2n + 3)(3(n + 1)2 + 3(n + 1)− 1)

30
.
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Example 26 :

Sn =
n∑

k=1

1

k(k + 1)
=

n

n + 1
.

S1 = 1
2 and assume that Sn =

n

n + 1
for some n ∈ N.

Sn+1 = Sn +
1

(n + 1)(n + 2)

=
n

n + 1
+

1

(n + 1)(n + 2)

=
1

n + 1
(n +

1

n + 2
) =

n + 1

n + 2
.
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Example 27 :
Let (an)n be a sequence defined by a0 ∈ (0, 1], and for all n ≥ 0,

an+1 = 2an+a2n
4 .

Prove that ∀n ≥ 0, an ∈ (0, 1] and an ≤ an+1.
Base step: a0 ∈ (0, 1].
Inductive step:

Assume that an ∈ (0, 1]. Then 0 < an+1 = 2an+a2n
4 ≤ 3

4 ≤ 1.
Then an ∈ (0, 1] for all n ≥ 0.

Base step: a1 =
2a0+a20

4 ≤= 2a0+a0
4 = 3

4a0 ≤ a0.
Inductive step:

Assume that an ≤ an−1. Then an+1 = 2an+a2n
4 ≤ 3

4an ≤ an.
Then an+1 ≤ an for all n ≥ 0.
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Strong Induction

We want to prove ∀n ∈ N, (P(n)) is true.
Basis step: show P(1) is true.
Inductive step: show (P(1)∧ . . .∧ P(n))→ P(n + 1) for all n ∈ N.
( Assume n is arbitrary and P(1), . . . ,P(n) are true. Show
P(n + 1) is true.)
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Example 28 :
Let (an)n be a sequence defined by a1 = 2, a2 = 4 and for all
n ≥ 3, an = an−1 + 2an−2.
Prove that ∀n ≥ 1, an = 2n.
Base step: a1 = 2 = 21, a2 = 4 = 22.
Inductive step:
Assume for n ≥ 3 fixed but random that: an−1 = 2n−1 and
an−2 = 2n−2.
Then an = an−1 + 2an−2 = 2n−1 + 2n−1 = 2n.
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