

COURSE SPECIFICATIONS (CS)

Classical Mechanics 2
PHYS 312

June 2018

Institution: King Saud University	Date: 12/2017					
College/Department: Science/Physics and Astronomy						
A. Course Identification and General Information						
1. Course title and code: Classical Mechanics 2 – PHYS 312						
2. Credit hours: 3(3+0+0)						
3. Program(s) in which the course is of	•					
(If general elective available in many pr	rograms indicate this rather than list programs)					
4. Name of faculty member responsible	e for the course: Dr. Maien Yahya Binjonaid					
5. Level/year at which this course is of						
6. Pre-requisites for this course (if any)): PHYS 211					
7. Co-requisites for this course (if any).	: None					
8. Location if not on main campus: NA						
9. Mode of Instruction (mark all that ap	oply)					
a. traditional classroom	* What percentage? 100					
b. blended (traditional and online)	What percentage?					
c. e-learning	What percentage?					
d. correspondence	What percentage?					
f. other	What percentage?					
Comments:						

B Objectives

- 1. What is the main purpose for this course?
- 1. To familiarize the student with the concept of Action and the principle of least action
- 2. The student should understand the concept of the Lagrangian and the Euler-Lagrange equations of motion.
- 3. The student should learn the concept of the Hamiltonian and Hamiltonian equations of motion.
- 4. The student should understand motion in noninertial reference frames and inertial forces.
- 5. The student should understand the concept of central forces, and that gravity is an example of such a force.
- 2. Briefly describe any plans for developing and improving the course that are being implemented. (e.g. increased use of IT or web based reference material, changes in content as a result of new research in the field).

The content of the course will be made available via Blackboard.

C. Course Description (Note: General description in the form used in Bulletin or handbook)

Course Description:

Energy and Momentum: Conservative forces, Moments, central forces, calculus of variation.

Central conservative forces: Inverse square-law, orbits, gravitational potential.

Non-inertial reference frames and inertial forces.

Two- and Three body systems.

Rigid bodies: rotation about axes, effects of small forces.

Lagrangian mechanics: action, principle of least action, generalized coordinates, Lagrange equations.

Hamiltonian mechanics: Hamilton's equations of motion, Liouville's theorem. Small oscillations: orthogonal coordinates, normal modes, and coupled oscillators.

1. Topics to be Covered		
List of Topics	No. of Weeks	Contact hours

Energy and Momentum: Conservative forces, Moments, central forces, calculus of variation.	2	6
Central conservative forces: Inverse square-law, orbits, gravitational potential.	2	6
Non-inertial reference frames and inertial forces.	2	6
Two- and Three body systems.	2	6
Rigid bodies: rotation about axes, effects of small forces.	2	6
Lagrangian mechanics: action, principle of least action, generalized coordinates, Lagrange equations.	2	6
Hamiltonian mechanics: Hamilton's equations of motion, Liouville's theorem. Small oscillations: orthogonal coordinates, normal modes, and coupled oscillators.	3	9

2. Course components (total contact hours and credits per semester):						
	Lecture	Tutorial	Laboratory or Studio	Practical	Other:	Total
Contact Hours	45					45
Credit	45					45

3. Additional private study/learning hours expected for students per week.	3	

4	. Course	Learning	Outcomes	in NQI	F Domains	of	Learning	and	Alignment	with	Assessme	ent
	Methods	and Teac	hing Strates	gy								

On the table below are the five NQF Learning Domains, numbered in the left column.

First, insert the suitable and measurable course learning outcomes required in the appropriate learning domains (see suggestions below the table). **Second**, insert supporting teaching strategies that fit and align with the assessment methods and intended learning outcomes. **Third**, insert appropriate assessment methods that accurately measure and evaluate the learning outcome. Each course learning outcomes, assessment method, and teaching strategy ought to reasonably fit and flow together as an integrated learning and teaching process. (Courses are not required to include learning outcomes from each domain.)

Code	NQF Learning Domains	Course Teaching	Course Assessment
#	And Course Learning Outcomes	Strategies	Methods
1.0	Knowledge		
1.1	To outline the main concepts of analytical mechanics	Lecture, Smart Board	Exams and homework
1.2	To reproduce well-known results in classical mechanics	Lecture, Smart Board	Exams and homework
2.0	Cognitive Skills		
2.1	Calculate the dynamical properties of mechanical systems using different methods	Lecture, Discussion	Discussion
2.2	Analyze classical mechanical systems using the Lagrangian and Hamiltonian methods	Lecture, Discussion	Discussion
3.0	Interpersonal Skills & Responsibility		
3.1	Demonstrate mastery of classical mechanical techniques	Group discussion, Inverted class	Presentation / discussion
3.2	•		
4.0	Communication, Information Technology, Numeric	al	
4.1	Illustrate how to solve problems in classical mechanics	Presentation	Group presentations
4.2			
5.0	Psychomotor		
5.1			
5.2			

6. Se	chedule of Assessment Tasks for Students During the Semester		
	Assessment task (e.g. essay, test, group project, examination, speech, oral presentation, etc.)	Week Due	Proportion of Total Assessment
1	Midterm 1	5	15%
2	Midterm 2	11	15%
3	Quiz	Throughout	10%
4	Homework	Throughout	10%
5	In-class discussion	Throughout	10%
6	Final	End of term	40%
7			

8		

D. Student Academic Counseling and Support

1. Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice. (include amount of time teaching staff are expected to be available each
week)
2 hours per week of office hours

E Learning Resources

1. List Required Textbooks

Classical Mechanics by Tom Kibble and Frank Berkshire, Fifth Edition, Imperial College Press, 2004

Introduction to Classical Mechanics: With Problems and Solutions, First Edition, David Morin, 2008, Cambridge University Press

2. List Essential References Materials (Journals, Reports, etc.)

Analytical Mechanics, G. Cassiday and G. Fowles, Seventh Edition, 2004, Brooks Cole

- 3. List Recommended Textbooks and Reference Material (Journals, Reports, etc)
- 4. List Electronic Materials, Web Sites, Facebook, Twitter, etc.
- 5. Other learning material such as computer-based programs/CD, professional standards or regulations and software.

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (i.e. number
of seats in classrooms and laboratories, extent of computer access etc.)
1. Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)
Lecture hall for 30 students
Lecture half for 50 students
2. Computing resources (AV, data show, Smart Board, software, etc.)
Smart Board
Smart Board
3. Other resources (specify, e.g. if specific laboratory equipment is required, list requirements or
attach list)
G Course Evaluation and Improvement Processes
1 Constant of a Objectivity Constant Facility of a February of Tables
1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching
Feedback to be taken at the end of each class
2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department
Peer consultation
3 Processes for Improvement of Teaching

Developing teaching based on regular feedback and peer consultation					
4. Processes for Verifying Standards of Student	Achievement (e.g. check marking by an				
independent member teaching staff of a sample remarking of tests or a sample of assignments w	of student work, periodic exchange and				
Double-checking by independent peers					
5 Describe the planning arrangements for period planning for improvement.	dically reviewing course effectiveness and				
Creating a table for the course to ensure that the goals are achieved, and taking into account feedback and peer consultation					
Name of Instructor:					
Signature:	Date Report Completed:				
Name of Field Experience Teaching Staff					
Program Coordinator:					
Signature:	Date Received:				