

COURSE SPECIFICATIONS (CS)

Semiconductor Physics

PHYS 423

June 2018

Institution: King Saud University	Date:2018
College/Department: College of Science, Physics & Astronomy Department	

A. Course Identification and General Information

1. Course title and code:Semiconductor	r physics (PHYS 423)			
2. Credit hours: $2(2+0+0)$				
3. Program(s) in which the course is of	fered.			
(If general elective available in many pr	ograms indicate this rather than list programs)			
Physics and other science and engineeri	ng programs			
4. Name of faculty member responsible	e for the course			
Dr.				
5. Level/year at which this course is of	fered:Eighth level			
6. Pre-requisites for this course (if any)	: Solid State Physics (PHYS 371)			
7. Co-requisites for this course (if any):				
8. Location if not on main campus				
1. Main campus in Diriyah, College of Scie	ence, Department of Physics & Astronomy			
9. Mode of Instruction (mark all that ap	9. Mode of histraction (mark an mat apply)			
a. traditional classroom	\checkmark What percentage? 80%			
b. blended (traditional and online)	Vhat percentage? 20%			
c. e-learning	What percentage?			
d. correspondence	What percentage?			
f. other	What percentage?			
Comments:				

B Objectives

- 1. What is the main purpose for this course?
- a) The student should review the basic concepts of semiconductors.
- b) The student should learn the properties semiconductor carriers.
- c) Should get acquainted with the basic laws of carrier concentration.
- d) Should learn the basic concepts of semiconductor devices.
- e) Should get acquainted with the new trends in semiconductor materials

2. Briefly describe any plans for developing and improving the course that are being implemented. (e.g. increased use of IT or web based reference material, changes in content as a result of new research in the field)

- Assigning extra hours for solving selected problems that are of particular interest.
- The course material is discussed during tutorials
- Using the internet resources to access particular advanced topics

C. Course Description (Note: General description in the form used in Bulletin or handbook)

Course Description:

Introduction to semiconductor materials, Elemental and compound semiconductors, Intrinsic and extrinsic semiconductors, electronic properties of semiconductors Carrier transport phenomena, optical processes in semiconductors, theory of p-n junctions, Ideal current-voltage characteristics, Metal-Semiconductor contact, Schottky barriers and Ohmic contacts, Semiconductor heterojunctions.

1. Topics to be Covered		
List of Topics	No. of Weeks	Contact hours
Characteristics of semiconductor materials. Crystal structures of	2	4
semiconductors.		
Theory of bands and semiconductors. Energy gap in semiconductors.	3	6
Measurement of energy gap.		
Dynamics of electrons in semiconductors conduction bands. Holes	4	8
and Properties of holes. Density of carriers in semiconductors. Fermi		
level in semiconductors, optical processes in semiconductors		
Effects of dopants in semiconductors. P- and n-types, charges	2	4
balance and movement. Ionization of donors and acceptors.		
Theory of p-n junctions, Ideal current-voltage characteristics, Metal-	4	8
Semiconductor contact, Schottky barriers and Ohmic contacts,		
Semiconductor heterojunctions.		

2. Course con	nponents (to	otal contact he	ours and credits	per semester):		
	Lecture	Tutorial	Laboratory or Studio	Practical	Other:	Total

Contact Hours	30			30
Credit	30			30

3. Additional private study/learning hours expected for students per week.

2hours

4. Course Learning Outcomes in NQF Domains of Learning and Alignment with Assessment Methods and Teaching Strategy

On the table below are the five NQF Learning Domains, numbered in the left column.

<u>First</u>, insert the suitable and measurable course learning outcomes required in the appropriate learning domains (see suggestions below the table). **<u>Second</u>**, insert supporting teaching strategies that fit and align with the assessment methods and intended learning outcomes. **<u>Third</u>**, insert appropriate assessment methods that accurately measure and evaluate the learning outcome. Each course learning outcomes, assessment method, and teaching strategy ought to reasonably fit and flow together as an integrated learning and teaching process. (Courses are not required to include learning outcomes from each domain.)

Code	NOF Learning Domains	Course Teaching	Course Assessment
#	And Course Learning Dutcomes	Strategies	Methods
1.0	Knowledge		
	-		
	 The student should memorize the basic concepts of solid state The student should recognize the basic concepts of semiconductors. The student should define the carrier concepts and conduction in semiconductor junctions and device physics. The student should outline the methods of solid state physics to solve the semiconductor phenomena and their 	 Lecturers and debates Homework assignments Lab demonstrations small group work 	 Exams -peer evaluations - analytical reports -long and short essays - group reports
	applications		
2.0	Cognitive Skills		
2.0			
2.0	 To explain the daily life applications of the studied topics. To explain the most famous and useful instruments build on the studied topics. To recognize how technology is built from simple to advanced present states To summarize some interesting experiments and applications in the field of the studied course. 	 whole group and small group discussions Case studies individual presentation brainstorming 	-portfolios -discussion forums -interviews -debates
3.0	Interpersonal Skills & Responsibility		
	writing reportsTo modifythe English languageTo demonstrate solving problems	-Guest speakers -whole group and small group discussions	-Individual and group presentations -speeches

Course Specifications, Ramadan 1438H, June 2017.

4.0	 To illustrate Searching on the internet choosing the material of the course Communication, Information Technology, Numerical 	 research activities -projects 	- posters -case studies
	 To illustrate how to Communicate with others: the lecturer – students in the class To interpret Information Technology through the Internet and to assess the computer skills To evaluate the Numerical skills through: solving problems- computation – data analysis – feeling physical reality of results. 	 memorization projects whole group and small group discussions brainstorming 	 log books analytical reports graphic organizers graphs and tables group presentations
5.0	Psychomotor		I
	Not applicable	Not applicable	Not applicable

6. So	chedule of Assessment Tasks for Students During the Semester		
	Assessment task (e.g. essay, test, group project, examination, speech, oral presentation, etc.)	Week Due	Proportion of Total Assessment
1	First Mid-term exam		15%
2	Second Mid-term exam		15%
3	Home works, assignments, and experimental		30%
4	Final Exam		40%

D. Student Academic Counseling and Support

1. Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice. (include amount of time teaching staff are expected to be available each week)

• Office hours 3 hr/ week

E Learning Resources

1. List Required Textbooks

- 1. S. M., SZE, Semiconductor Devices: Physics and Technology, AT& T Bell Laboratories, Murray Hill, New Jersey, John Wiley & Sons, 1985.
- 2. Neaman D. A., Semiconductor Physics & Devices Basic Principles, 4th edition,

Hill edition, 2011. **McGraw** 3. M. S. Tyagi, Introduction to Semiconductor Materials and Devices, John Wiley& Sons, 2008 4. Pallab Bhattacharya, semiconductor optoelectronic devices, Pearson Education; Second edition (2017)2. List Essential References Materials (Journals, Reports, etc.) 1. S. M., SZE, Semiconductor Devices: Physics and Technology, AT& T Bell Laboratories, Murray Hill, New Jersey, John Wiley & Sons, 1985. 2- Neaman D. A., Semiconductor Physics & Devices – Basic Principles, 4th edition, McGraw Hill edition, 2011. 3- M. S. Tyagi, Introduction to Semiconductor Materials and Devices, John Wiley& Sons, 2008 4- Pallab Bhattacharya, semiconductor optoelectronic devices, Pearson Education; Second edition (2017) 3. List Recommended Textbooks and Reference Material (Journals, Reports, etc) 1. S. M., SZE, Semiconductor Devices: Physics and Technology, AT& T Bell Laboratories, Murray Hill, New Jersey, John Wiley & Sons, 1985. 2. Neaman D. A., Semiconductor Physics & Devices – Basic Principles, 4th edition, **McGraw** Hill edition, 2011. 3. M. S. Tyagi, Introduction to Semiconductor Materials and Devices, John Wiley& Sons, 2008 4. Pallab Bhattacharya, semiconductor optoelectronic devices, Pearson Education; Second edition (2017)4. List Electronic Materials, Web Sites, Facebook, Twitter, etc. Websites on the internet that are relevant to the course topics 5. Other learning material such as computer-based programs/CD, professional standards or regulations and software. Multimedia associated with the text book and the relevant websites F. Facilities Required Indicate requirements for the course including size of classrooms and laboratories (i.e. number

of seats in classrooms and laboratories, extent of computer access etc.)

- 1. Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)
 - Lecture room with at least 25 seats

2. Computing resources (AV, data show, Smart Board, software, etc.)

• Computer room containing at least 15 systems

3. Other resources (specify, e.g. if specific laboratory equipment is required, list requirements or attach list)

- Availability of demonstrative materialsrelevant to the course material
- Safety facilities

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

- Course evaluation by student
- Students- faculty meetings

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department

- Peer consultation on teaching
- Departmental council discussions
- Discussions within the group of faculty teaching the course
- 3 Processes for Improvement of Teaching
- Conducting workshops given by experts on the teaching and learningMethodologies.
- Periodical departmental revisions of its methods of teaching.
- Monitoring of teaching activates by senior faculty members.

4. Processes for Verifying Standards of Student Achievement (e.g. check marking by an independent member teaching staff of a sample of student work, periodic exchange and remarking of tests or a sample of assignments with staff at another institution)

- Providing samples of all kinds of assessments in the departmental course portfolio of each course
- Assigning group of faculty members teaching the same course to grade the same questions for various students.

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

- The course material and learning outcomes are periodically reviewed and the changes to be taken are approved in the departmental and higher councils.
- The head of department and faculty take the responsibility of implementing the proposed changes in the course materials.

Name of Instructor:

Signature:_____Date Report Completed:_____

Name of Field Experience Teaching Staff

Program Coordinator: _____

_____ Date Received:_____