King Saud University College of Science Mathematics Department

Form (H) Short course description

Course title: Introduction to General	Course number and code: Math 373
Topology.	
Previous course requirement: Math383	Language of the course: Arabic
Course level: 6	Effective hours: 4

وصف المقرر: Course description

الفضاءات التوبولوجية، أمثلة، انغلاق مجموعة، Topological spaces: Definition and المجموعة المشتقة، الفضاءات الجزئية، القواعد، الجداء examples. Open and closed sets, Subspaces, التوبولوجي المنتهي، القواعد الجزئية، الفضاءات Closure of a set, Interior, boundary, exterior كفضاء يحقق n المترية، أمثلة، المسألة المترية، and derived sets. Basis Definition and المترية، الدوال المتصلة، أمثلة، تصنيف الدوال المتصلة examples. Finite product topology. على الفضاءات التوبولوجية والمترية، التكافؤ Subbases. Definition and examples of the التوبولوجي، أمثلة، الخاصية التوبولوجية، الفضاءات metrics, metric spaces, Hausdorff spaces, metrizability problems. Continuous ، التراص بنقطة n المتراصة، أمثلة، التراص في functions, and homeomorphisms, النهاية، التراص بالمتتابعات. خاصية التقاطع المنتهية. topological property. Compactness, compactness in \square^n , Limit point compactness, Sequentially compact spaces, Compactness in metric spaces.

أهداف المقرر Course objectives

Topology, Topological spaces, Open Sets,	التوبولوجي، الفضاءات التوبولوجية، المجموعات
closed sets, and Subspaces.	المفتوحة والمغلقة والفضاءات التوبولوجية
Basis, Product Topology and Subbases.	القواعد، الجداء التوبولوجي، القواعد الجزئية
Metrics, Metric spaces, Hausdorff Space,	المترك، الفضاءات المترية، فضاء هاوزدورف،
Sequences in Topological Spaces,	المتتابعات في الفضاءات التوبولوجية، المسألة المترية
Metrizability Problem and Examples of	وأمثلة لفضاءات تحقق المترية.
Metrizabile Spaces.	
Continuity and Homeomorphisms.	الاتصال والتكافؤ التوبولوجي
Compactness, Compact Spaces and Some of	التراص، الفضاءات المتراصة وبعض خواصها،
their properties, Limit Point Compactness	التراص بنقطة والتراص بالمتتابعات، التراص
and Sequentially, Compactness in Metric	بالفضاءات المترية، خاصية التقاطع المنتهية.
Spaces, Finite Intersection Property.	_

Learning outcomes (understanding, knowledge, and intellectual and scientific skills) After studying this course, the student is expected to be able to:

Define topology on a non empty set, open,	
closed, closure, limit point, interior, exterior,	
and boundary of a set, explain the relations	
between these sets, and solve problems related to	
these concepts.	
Explain how to generate a topology from a	
collection of subsets under certain	
conditions, and without any conditions, and	
prove theorems and problems related to these	
concepts.	
Differentiate between functions that define a	
metric on a set and those that do not, and	
prove theorems and problems related to these	
concepts	
Explain how a metric generate a topology,	
and the metrizability problem, and prove	
whether a topological space is metrizabile.	
Write and prove the equivalent definitions	
of continuous functions, and homeomorphic	
spaces.	
Reconstruct homeomorphism functions	
between topological space	
Write definitions of open covering, compact	
space and, , and prove theorems and problems	
related to these concepts	
Write definitions of limit point compactness,	
sequentially compact spaces, and explain the	
relation between the three types of	
compactness in general topological spaces	
and in metric spaces, and prove theorems and	
problems related to these concepts	

Textbooks adopted and supporting references

Title of the book	Author's name	Publisher's name	Date of publication
Topology a first	James Munkres	Prentice – Hal	1975
course			
Introduction to	Paul Long	Charles E. Merrill	1971
general topology		Publishing	
		Company	

General Topology	Tahsin Ghazal	King Saud	In press
		University	