

ATTACHMENT 5.

T6. COURSE SPECIFICATIONS (CS)

Phys 533

Advanced Laser Physics

Course Specifications

Institution: KSU	Date: Dec 30, 2017
College/Department: Physics and Astrono.	my Department
A. Course Identification and General In	formation
1. Course title and code: Advanced Laser	Physics - Code: Phys 533
2. Credit hours: (3+0) per week	
3. Program(s) in which the course is offe	
	grams indicate this rather than list programs)
MSc degree in Physics - Laser physics and spe	
4. Name of faculty member responsible	for the course
Dr. Zeyad A. Alahmed	1
5. Level/year at which this course is offe	
6. Pre-requisites for this course (if any):	Phys 505
7. Co-requisites for this course (if any):	
8. Location if not on main campus:	
Main campuses for Male and female	
9. Mode of Instruction (mark all that app	oly):
a. traditional classroom	What percentage?
b. blended (traditional and online)	X What percentage? 100
c. e-learning	What percentage?
d. correspondence	What percentage?

What percentage?

f. other

Comments:

B Objectives

1. What is the main purpose for this course?

This course covers the fundamental concepts and properties of laser, the semi-classical theory of laser, application of laser with matter.

- 2. Briefly describe any plans for developing and improving the course that are being implemented. (e.g. increased use of IT or web based reference material, changes in content as a result of new research in the field)
- a. Implement Blackboard to highlight interesting links for the relative topics.
- b. Use simulation software to visualize and understand the basic knowledge.
- c. Introducing students to a specialized software to deal with advanced problems.
- c. Lab visit to observe some studied experiment.

C. Course Description (Note: General description in the form used in Bulletin or handbook)

Course Description:

Propagation of optical beams in homogenous and guiding media; Optical resonators, Fabry Perot etalon, mode stability criteria, losses in optical resonator, unstable resonator; Theory of laser oscillation, threshold conditions, Fabry Perot laser, three and four level systems, Mode locking and Q-switching; Non-linear phenomena; Frequency conversion; Some specific laser systems, Ruby, Nd:YAG, He-Ne, CO2, Ar +, diode and high power lasers.

1. Topics to be Covered		
List of Topics	No. of Weeks	Contact hours
Introduction to laser Physics	1	3
Propagation of optical beams in homogenous medium	2	6
Optical resonators	2	6
Theory of laser oscillation	2	6
Q-switching and Mode locking	1	3
Non-linear phenomena	1	3
Frequency conversion	1	3
Some specific laser systems	2	6

2. Course compone	nts (total con	tact hours an	d credits per se	mester):		
	Lecture	Tutorial	Laboratory/ Studio	Practical	Other:	Total

Contact	Planed	40	0	valuation Commission 0	0	0	40
Hours	Actual	40					40
Credit	Planed	40	0	0	0	0	40
Credit	Actual	40	0	0	0	0	40

3. Additional private study/learning hours expected for students per week.	6	

4. Course Learning Outcomes in NQF Domains of Learning and Alignment with Assessment Methods and Teaching Strategy

On the table below are the five NQF Learning Domains, numbered in the left column.

<u>First</u>, insert the suitable and measurable course learning outcomes required in the appropriate learning domains (see suggestions below the table). <u>Second</u>, insert supporting teaching strategies that fit and align with the assessment methods and intended learning outcomes. <u>Third</u>, insert appropriate assessment methods that accurately measure and evaluate the learning outcome. Each course learning outcomes, assessment method, and teaching strategy ought to reasonably fit and flow together as an integrated learning and teaching process. (Courses are not required to include learning outcomes from each domain.)

Code	NQF Learning Domains	Course Teaching	Course Assessment
#	And Course Learning Outcomes	Strategies	Methods
1.0	Knowledge		
1.1	Define the laser part	Lecturing	Presentation
1.2	Describe the optical propagation using ABCD	Exercises	Mid-term exam
1.2	matrix		
2.0	Cognitive Skills		
2.1	Analyze the optical resonators in different cases	Class discussion	Mid-term exam
2.2		Problem solving	
3.0	Interpersonal Skills & Responsibility		
3.1	Present a short report	Group presentation	Presentation
3.2			
4.0	Communication, Information Technology, Numeric	al	
4.1	Demonstrate advanced functions using	Demonstration	Write report
7.1	simulation software		
4.2			
5.0	Psychomotor		
5.1			
5.2			

5. 3	Schedule of Assessment Tasks for Students During the Se	mester	
	Assessment task (i.e., essay, test, quizzes, group project, examination, speech, oral presentation, etc.)	Week Due	Proportion of Total Assessment
1	HW (Problem solving)	3 rd , 6 th , 9 th , and 12 th	18%
2	Mid-Exam	4 th ,8 th	40%

3	Final Exam	15 th	40%
4	Report and Presentation	14 th	2%
5			
6			
7			
8			

D. Student Academic Counseling and Support

1. Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice. (include amount of time teaching staff are expected to be available each week)

Office hours: 3 hours per week

E Learning Resources

1. List Required Textbooks

Principles of lasers; 4th ed.; Ozario Svelto; (transl. David C. Hanna); Plenum1998.

- 2. List Essential References Materials (Journals, Reports, etc.)
 - Lasers; Antony E. Siegman; Univ. Science Book 1986.
 - Optical Electronics; 4th ed., Amnon Yariv; Saunders College Press 1991.
 - Lasers, P. W. Milonni and J. H. Eberly (John Wiley, New York, NY 1988).
 - Quantum Electronics; 3rd ed., Amnon Yariv; Wiley 1989.
 - Laser Electronics; 3rd ed., Joseph T. Verdeyen; Prentice Hall 1995.
- 3. List Electronic Materials, Web Sites, Facebook, Twitter, etc.
- 4. Other learning material such as computer-based programs/CD, professional standards or regulations and software.

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (i.e. number of seats in classrooms and laboratories, extent of computer access, etc.)

- 1. Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)
 - Classroom for 10 students
 - Library
- 2. Technology resources (AV, data show, Smart Board, software, etc.)
 - Smart Board
 - Black Board
- 3. Other resources (specify, e.g. if specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

- 1. Strategies for Obtaining Student Feedback on Effectiveness of Teaching Student evaluation electronically organized by the University
- 2. Other Strategies for Evaluation of Teaching by the Instructor or by the Department Lecturers Committee to review the final results

 Departmental review of the final results
- 3. Processes for Improvement of Teaching
 - Course report
 - Program report
 - Program Self study
- 4. Processes for Verifying Standards of Student Achievement (e.g. check marking by an independent member teaching staff of a sample of student work, periodic exchange and remarking of tests or a sample of assignments with staff at another institution)
- 5. Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.
 - Student evaluation
 - Course report
 - Program report
 - Program Self study

Name of Course Instructor:	Zeyad A. Alahmed
Signature:	Date Specification Completed: Dec 30, 2017
Program Coordinator:	
Signature:	Date Received: