

## **ATTACHMENT 5.**

# T6. COURSE SPECIFICATIONS (CS)

(PHYS 544) Solar Cells

by

Prof. Ahmed El-Naggar 2018



| Institution: King Saud University        | Date:                            |  |
|------------------------------------------|----------------------------------|--|
| College/Department : College of Science, | Physics and Astronomy Department |  |

| A         | Course  | Identifia | eation an | id Gener | al Info  | rmation        |
|-----------|---------|-----------|-----------|----------|----------|----------------|
| <b></b> ' | . wuist |           |           |          | 41 11111 | 1 111/41/14/11 |

| A. Course Identification and General In          | formation                                               |  |  |  |  |
|--------------------------------------------------|---------------------------------------------------------|--|--|--|--|
| 1. Course title and code: Solar Cells (PHYS 544) |                                                         |  |  |  |  |
| 2. Credit hours: <b>2(2+0)</b>                   | 2. Credit hours: <b>2(2+0)</b>                          |  |  |  |  |
| 3. Program(s) in which the course is offer       | ered.                                                   |  |  |  |  |
| (If general elective available in many pro       | ograms indicate this rather than list programs)         |  |  |  |  |
| Physics and other science and engineering        |                                                         |  |  |  |  |
| 4. Name of faculty member responsible            | for the course                                          |  |  |  |  |
| Prof. Ahmed El-Naggar                            |                                                         |  |  |  |  |
| 5. Level/year at which this course is offer      |                                                         |  |  |  |  |
| 6. Pre-requisites for this course (if any):      |                                                         |  |  |  |  |
| 7. Co-requisites for this course (if any):       |                                                         |  |  |  |  |
| , ,                                              |                                                         |  |  |  |  |
| 8. Location if not on main campus:               |                                                         |  |  |  |  |
|                                                  | ence, Department of Physics & Astronomy (Boys and Girls |  |  |  |  |
| sections)                                        |                                                         |  |  |  |  |
| 9. Mode of Instruction (mark all that app        | ply):                                                   |  |  |  |  |
|                                                  |                                                         |  |  |  |  |
| a. traditional classroom                         | $\sqrt{}$ What percentage? $\boxed{10\%}$               |  |  |  |  |
| b. blended (traditional and online)              | √ What percentage? 10%                                  |  |  |  |  |
| 1 .                                              |                                                         |  |  |  |  |
| c. e-learning                                    | What percentage?                                        |  |  |  |  |
| d. correspondence                                | What percentage?                                        |  |  |  |  |
| f. other                                         | What percentage?                                        |  |  |  |  |
| Comments:                                        |                                                         |  |  |  |  |



#### **B** Objectives

- 1. What is the main purpose for this course?
  - ➤ The student should get acquainted with the fundamentals of Solar Cells generations and their applications.
  - The student should be able to apply this course in his/her future research work, as exploitation of solar cells applications in Saudi Arabia or in other counties.
- 2. Briefly describe any plans for developing and improving the course that are being implemented. (e.g. increased use of IT or web based reference material, changes in content as a result of new research in the field)
  - ➤ Electronic materials and computer based programs have been utilized to support the lecture course material.
  - The course material was posted on the Website that could be accessed by the students enrolled in the course.
  - > Demonstration of lab experiments related to the solar cells fabrication and applications.

#### C. Course Description (Note: General description in the form used in Bulletin or handbook)

#### Course Description:

The characteristics of sunlight, Semiconductors and P-N junctions, The behavior of solar cells, Cell properties and design, Principals of solar cell operation, Low cost industrial technologies of crystalline silicon solar cells, Thin silicon solar cells, CdTe thin-film PV modules, Cu(In, Ga)Se<sub>2</sub> thin film solar cells, Space and concentrator solar cells, High efficiency concentrator solar cells, Photoelectrochemical solar cells, Organic and plastic solar cells.

| 1. Topics to be Covered                                                         |                 |               |
|---------------------------------------------------------------------------------|-----------------|---------------|
| List of Topics                                                                  | No. of<br>Weeks | Contact hours |
| Chapter 1: The characteristics of sunlight                                      | 1 week          | 2             |
| Chapter 2: Semiconductors and P-N junctions                                     | 1 week          | 2             |
| Chapter 3: The behavior of solar cells                                          | 1 week          | 2             |
| Chapter 4: Cell properties and design                                           | 1 week          | 2             |
| Chapter 5: Principals of solar cell operation                                   | 1 week          | 2             |
| Chapter 6: Low cost industrial technologies of crystalline silicon solar cells: | 1 week          | 2             |
| Chapter 7: Thin silicon solar cells:                                            | 1 week          | 2             |
| Chapter 8: CdTe thin-film solar cells and PV modules                            | 1 week          | 2             |
| Chapter 9: Cu(In, Ga)Se <sub>2</sub> thin film solar cells                      | 1 week          | 2             |
| Chapter 10: Space and concentrator solar cells                                  | 1 week          | 2             |
| Chapter 11: High efficiency concentrator solar cells                            | 1 week          | 2             |
| Chapter 13: Photo-electrochemical solar cells                                   | 1 week          | 2             |
| Chapter 14: Organic and plastic solar cells                                     | 1 week          | 2             |
| Chapter 15: Quantum dot solar cells                                             | 1 week          | 2             |



2. Course components (total contact hours and credits per semester):

|         |        | Lecture | Tutorial | Laboratory/<br>Studio | Practical | Other: | Total |
|---------|--------|---------|----------|-----------------------|-----------|--------|-------|
| Contact | Planed | 30      |          |                       |           |        | 30    |
| Hours   | Actual | 30      |          |                       |           |        | 30    |
| Credit  | Planed | 30      |          |                       |           |        | 30    |
| Credit  | Actual | 30      |          |                       |           |        | 30    |

3. Additional private study/learning hours expected for students per week.

2 hours

4. Course Learning Outcomes in NQF Domains of Learning and Alignment with Assessment Methods and Teaching Strategy

On the table below are the five NQF Learning Domains, numbered in the left column.

<u>First</u>, insert the suitable and measurable course learning outcomes required in the appropriate learning domains (see suggestions below the table). <u>Second</u>, insert supporting teaching strategies that fit and align with the assessment methods and intended learning outcomes. <u>Third</u>, insert appropriate assessment methods that accurately measure and evaluate the learning outcome. Each course learning outcomes, assessment method, and teaching strategy ought to reasonably fit and flow together as an integrated learning and teaching process. (Courses are not required to include learning outcomes from each domain.)

| Code | NQF Learning Domains                                                                                                                                                                                                                                                                                           | Course Teaching                                                                                                                                                                   | Course Assessment                                                                                                                                                       |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #    | And Course Learning Outcomes                                                                                                                                                                                                                                                                                   | Strategies                                                                                                                                                                        | Methods                                                                                                                                                                 |
| 1.0  | Knowledge                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                   | •                                                                                                                                                                       |
|      | <ul> <li>To understand the fundamentals of sunlight</li> <li>To get acquainted with the behaviour of solar cells</li> <li>To get an experience and knowledge with the principles solar cells operation.</li> <li>To use different formulas to design models for solar cells</li> </ul>                         | •Introducing the basic links between solar cells design and their applications •Homework assignments •Lecture discussions                                                         | - In-class quizzes<br>- Midterms and final<br>exams                                                                                                                     |
| 2.0  | Cognitive Skills                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                   |                                                                                                                                                                         |
|      | <ul> <li>The daily life applications of the studied topics.</li> <li>The most famous and useful instruments build on the studied topics.</li> <li>How technology is built from simple to advanced present states</li> <li>some interesting experiments and applications in the field of solar cells</li> </ul> | - Defining duties for each chapter - Advising students to search on some of the mentioned technologies (in the course) either on the websites or in the library and make reports. | * The interaction<br>during the lectures<br>and discussions<br>* The reports of<br>different asked tasks<br>* Part of the Exams<br>should focus on the<br>understanding |
| 3.0  | Interpersonal Skills & Responsibility                                                                                                                                                                                                                                                                          |                                                                                                                                                                                   |                                                                                                                                                                         |
|      | <ul> <li>Writing reports</li> <li>Developing the English language</li> <li>Thinking in solving problems</li> <li>Searching on the internet</li> <li>Collecting the materials of the course</li> </ul>                                                                                                          | -Learning how to search<br>on the internet and use<br>the library<br>-Learning how to cover<br>missed lectures                                                                    | -Through discussions<br>in the lectures<br>-Checking reports<br>-Asking questions<br>-Quizzes and Exams                                                                 |



|     | Education Evaluation Cor                             |                                             | ı                                 |
|-----|------------------------------------------------------|---------------------------------------------|-----------------------------------|
|     | - Dealing with the lectures that the student missed. | -Learning how to                            |                                   |
|     | - Also the students should know how to do that       | summarize lectures or to                    |                                   |
|     | independently and through discussions with the       | collect materials of the                    |                                   |
|     | others.                                              | course                                      |                                   |
|     |                                                      | -Learning how to solve                      |                                   |
|     |                                                      | difficulties in learning:                   |                                   |
|     |                                                      | solving problems –                          |                                   |
|     |                                                      | enhance educational                         |                                   |
|     |                                                      | skills                                      |                                   |
|     |                                                      | -Developing his interest                    |                                   |
|     |                                                      | in Science through :(lab                    |                                   |
|     |                                                      | work, field trips, visits to                |                                   |
|     |                                                      | scientific and research                     |                                   |
|     |                                                      | institutes).                                |                                   |
|     |                                                      | - Encouraging the                           |                                   |
|     |                                                      | student to attend lectures                  |                                   |
|     |                                                      | regularly by giving                         |                                   |
|     |                                                      | bonus marks for                             |                                   |
|     |                                                      | attendance                                  |                                   |
|     |                                                      | - Giving students tasks                     |                                   |
|     |                                                      | and duties                                  |                                   |
|     |                                                      | - Learning how to write                     |                                   |
|     |                                                      | reports: some of them in                    |                                   |
|     |                                                      | English language.                           |                                   |
| 4.0 | Communication, Information Technology, Numeric       | <br>cal                                     |                                   |
|     |                                                      | - Advising the students                     |                                   |
|     |                                                      | to: help each other in                      |                                   |
|     |                                                      | education.                                  |                                   |
|     |                                                      | -communicating with the                     | Diamonia a manage                 |
|     | - Communication with others: the lecturer – students | lecturer to discuss                         | - Discussing reports on: problems |
|     | in the class                                         | difficulties.                               | solutions - internet              |
|     | - Information Technology through: the Internet – the | - Asking students to:<br>make search on the | searching                         |
|     | computer skills                                      | internet for some related                   | - Making discussion               |
|     | - Numerical skills through: solving problems-        | interesting topics.                         | on some explored                  |
|     | computation – data analysis)                         | -writing reports on the                     | points                            |
|     |                                                      | computer                                    | - Exams                           |
|     |                                                      |                                             | LAGIIIS                           |
|     |                                                      | - Asking for solving                        |                                   |
|     |                                                      | - Asking for solving                        |                                   |
|     |                                                      | some problems and                           |                                   |
|     |                                                      | some problems and recalculating some        |                                   |
| 5.0 | Psychomotor                                          | some problems and                           |                                   |

| 5. \$ | 5. Schedule of Assessment Tasks for Students During the Semester |                       |                     |
|-------|------------------------------------------------------------------|-----------------------|---------------------|
|       | Assessment task (i.e., essay, test, quizzes, group project,      | Week Due              | Proportion of Total |
|       | examination, speech, oral presentation, etc.)                    | Week Due              | Assessment          |
| 1     | Weekly Homework assignments                                      |                       | 10%                 |
| 2     | Attendance and Participation in the class                        |                       | 5%                  |
| 3     | First Mid-term exam                                              | 6 <sup>th</sup> week  | 20%                 |
| 4     | Second Mid-term exam                                             | 10 <sup>th</sup> week | 25%                 |



### D. Student Academic Counseling and Support

- 1. Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice. (include amount of time teaching staff are expected to be available each week)
  - Office hours 2 hr/ week
  - Additional sessions 1hr/ week aided by 1 lab assistant

#### E Learning Resources

- 1. List Required Textbooks
  - 1- Peter Wurfel and Uli Wurfel, "Physics of Solar Cells: From Basic Principles to Advanced Concepts" Wiley-VCH; 3 edition (September 13, 2016).
  - 2- Stephen Fonash, "Solar Cell Device Physics" Academic Press; 2 edition (April 27, 2010).
  - 3- Martin A. Green, "Solar Cells: Operating Principles, Technology, and System Applications", Prentice Hall (October 1, 1981)
  - 4- Martin A. Green, "Third Generation Photovoltaics: Advanced Solar Energy Conversion" Springer; 1st ed. 2003. 2nd printing 2005 edition (December 21, 2005).
  - 5- Stuart R Wenham (Editor), Martin A Green (Editor), Muriel E Watt (Editor), Richard Corkish (Editor), "Applied Photovoltaics" Routledge; 2nd edition (December 1, 2006)
- 2. List Essential References Materials (Journals, Reports, etc.)
  - 1- Peter Wurfel and Uli Wurfel, "Physics of Solar Cells: From Basic Principles to Advanced Concepts" Wiley-VCH; 3 edition (September 13, 2016).
  - 2- Stephen Fonash, "Solar Cell Device Physics" Academic Press; 2 edition (April 27, 2010).
  - 3- Martin A. Green," Solar Cells: Operating Principles, Technology, and System Applications", Prentice Hall (October 1, 1981)
  - 4- Martin A. Green, "Third Generation Photovoltaics: Advanced Solar Energy Conversion" Springer; 1st ed. 2003. 2nd printing 2005 edition (December 21, 2005).
  - 5- Stuart R Wenham (Editor), Martin A Green (Editor), Muriel E Watt (Editor), Richard Corkish (Editor), "Applied Photovoltaics" Routledge; 2nd edition (December 1, 2006)
- 3. List Electronic Materials, Web Sites, Facebook, Twitter, etc.

Websites on the internet that are relevant to the course topics

4. Other learning material such as computer-based programs/CD, professional standards or regulations and software.

Multimedia associated with the text book and the relevant websites

#### F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (i.e. number of seats in classrooms and laboratories, extent of computer access, etc.)

- 1. Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)
  - Lecture room with at least 25 seats
  - Auditorium of a capacity of not less than 25 seats for large lecture format classes Laboratory with at least 25 places
- 2. Technology resources (AV, data show, Smart Board, software, etc.)



- Computer room containing at least 15 systems
- Scientific calculator for each student.
- 3. Other resources (specify, e.g. if specific laboratory equipment is required, list requirements or attach list)
  - Availability of demonstrative materials relevant to the course material
  - Safety and Lab facilities

#### **G** Course Evaluation and Improvement Processes

- 1. Strategies for Obtaining Student Feedback on Effectiveness of Teaching
  - Course evaluation by student
  - Students- faculty meetings
- 2. Other Strategies for Evaluation of Teaching by the Instructor or by the Department
  - Peer consultation on teaching
  - Departmental council discussions
  - Discussions within the group of faculty teaching the course
- 3. Processes for Improvement of Teaching
  - Conducting workshops given by experts on the teaching and learning Methodologies.
  - Periodical departmental revisions of methods of teaching.
  - Monitoring of teaching activates by senior faculty members.
- 4. Processes for Verifying Standards of Student Achievement (e.g. check marking by an independent member teaching staff of a sample of student work, periodic exchange and remarking of tests or a sample of assignments with staff at another institution)
  - Providing samples of all kinds of assessments in the departmental course portfolio of each course
  - Assigning group of faculty members teaching the same course to grade same questions for various students.
  - Faculty members from other institutions are invited to review the accuracy of the grading policy.
- 5. Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.
  - The course material and learning outcomes are periodically reviewed and the changes to be taken are approved in the departmental meetings and higher councils.
  - The head of department and faculty dean take the responsibility of implementing the proposed changes.

| Name of Course Instructor | : Prof. Anmed El-Naggar                |
|---------------------------|----------------------------------------|
| Signature:                | Date Specification Completed: 1-1-2018 |
| Program Coordinator:      |                                        |
| Signature:                | Date Received:                         |