

ATTACHMENT 5.

T6. COURSE SPECIFICATIONS (CS)

Laser-matter interaction

Phys 633

Course Specifications

Institution: King Saud University	Date: 8 Jan 2018			
College/Department: Faculty of Science/Physics and Astronomy Department				
A. Course Identification and General Information				
1. Course title and code: laser-matter interaction, PHYS 633				
2. Credit hours: 3 (2+1)				
3. Program(s) in which the course is of (If general elective available in many pr	fered: PhD in physics rograms indicate this rather than list programs)			
4. Name of faculty member responsible	e for the course: Reem A. B. Alraddadi			
5. Level/year at which this course is of	fered: 2 nd term / First Year			
6. Pre-requisites for this course (if any)): None			
7. Co-requisites for this course (if any)	: None			
8. Location if not on main campus:				
9. Mode of Instruction (mark all that ap	pply):			
a. traditional classroom	$\boxed{} What percentage? \qquad 90\%$			
b. blended (traditional and online)	What percentage?			
c. e-learning	What percentage? 10%			
d. correspondence	What percentage?			
f. other	What percentage?			
Comments:				

B Objectives

1. What is the main purpose for this course?

Gives a brief introduction to the laser-matter interaction. Much of the physics interest stems from the fact that at high laser intensities, the optical properties of materials behave in altogether new ways. The course covers the theoretical principles and important application of laser-matter interactions.

2. Briefly describe any plans for developing and improving the course that are being implemented. (e.g. increased use of IT or web based reference material, changes in content as a result of new research in the field)

Short pulse laser interactions with matter might be given as an additional material. Since the invention of CPA, progress in the laser pulse laser technology has been unrelenting. Pulse durations have come down from ps to fs.

C. Course Description (Note: General description in the form used in Bulletin or handbook)

Course Description:

A cumulative definition of laser-matter interaction based on the physical phenomena which occur when a large number of laser-photons impinge on ordinary matter over time duration.

1. Topics to be Covered		
List of Topics	No. of Weeks	Contact hours
Laser beam characteristics- Beam focusing effects	2	2
Semi classical theory of absorption and emission – Reflectivity & transmission of matter	4	4
Photon transport theory.	3	3
Laser beam heating, melting, vaporization – Plasma formation- Rate of heating and cooling	6	6
Operational regimes in material processing -Depth of penetration – Key hole effect – Surface treatment (modification, cladding, alloying and hardening)	6	6
High power laser int. with solids (welding, cutting)	5	5

Optical properties of tissue - Laser tissue interaction (thermal,	4	4	
photochemical, photo mechanical, photo ablation plasma induced			
ablation and photo description).			

2. Course components (total contact hours and credits per semester):							
		Lecture	Tutorial	Laboratory/ Studio	Practical	Other:	Total
Contact	Planed	30			15		45
Hours	Actual	30			15		45
Credit	Planed	2			1		3
Credit	Actual	2			1		3

3. Additional private study/learning hours expected for students per week.

8

4. Course Learning Outcomes in NQF Domains of Learning and Alignment with Assessment Methods and Teaching Strategy

On the table below are the five NQF Learning Domains, numbered in the left column.

First, insert the suitable and measurable course learning outcomes required in the appropriate learning domains (see suggestions below the table). **Second**, insert supporting teaching strategies that fit and align with the assessment methods and intended learning outcomes. **Third**, insert appropriate assessment methods that accurately measure and evaluate the learning outcome. Each course learning outcomes, assessment method, and teaching strategy ought to reasonably fit and flow together as an integrated learning and teaching process. (Courses are not required to include learning outcomes from each domain.)

Code	NQF Learning Domains	Course Teaching	Course Assessment	
#	And Course Learning Outcomes	Strategies	Methods	
1.0	Knowledge			
1.1	Define plasma, depth of penetration	Lectures using smart-board.	Quizzes, Written exams	
1.2	Recognize laser beam characteristics	Lecture with visual animation	Lectures using smart-board.	
1.3	Recognize laser beam heating, melting, vaporization	Lecture with visual animation	Quizzes, Written exams, Homework	
2.0	Cognitive Skills	-		
2.1	Explain photon transport theory.	Lectures using smart-board, Tutorials	Quizzes, Written exams, Homework	

Course Specifications, Ramadan 1438H, June 2017.

2.2	Explain semi classical theory of absorption and emission	Lectures using smart-board.	Quizzes, Written exams
2.3	Compare between the rate of heating and cooling	Lectures using smart-board, Tutorials	Quizzes, Written exams
3.0	Interpersonal Skills & Responsibility		
3.1	Not applicable		
4.0	Communication, Information Technology, Numerical		
4.1	Calculate numerically the reflectivity & transmission of matter	Tutorials	Quizzes, Written exams
4.2	Analyze related scientific papers	Library	Presentation
4.3	Apply Optical properties of tissue	Tutorials	Quizzes, Written exams
5.0	Psychomotor		
5.1	Not applicable		

5.	5. Schedule of Assessment Tasks for Students During the Semester			
	Assessment task (i.e., essay, test, quizzes, group project, examination, speech, oral presentation, etc.)	Week Due	Proportion of Total Assessment	
1	1 st Midterm Exam	5	15%	
2	2 nd Midterm Exam	10	15%	
3	Class Activities (Quizzes- Essay- presentation)	weekly	15%	
4	Homework	weekly	15%	
5	Final Exam.	15	40%	

D. Student Academic Counseling and Support

1. Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice. (include amount of time teaching staff are expected to be available each week)

6 Office hours per week, teaching staff will be available

E Learning Resources

1. List Required Textbooks

1- Shor pulse laser interactions with matter, an introduction, Paul Gibbon (2005), Imperial college press.

2- Laser-plasma interactions and application, Paul Mckenna et al., Scottish Graduate Series(2013), Springer.

3- Extreme physics, Jeff Colvin and Jon Larsen, Cambridge, (2013).

2. List Essential References Materials (Journals, Reports, etc.)

3. List Electronic Materials, Web Sites, Facebook, Twitter, etc.

4. Other learning material such as computer-based programs/CD, professional standards or regulations and software.

Super-computer (workstation). TOPS opacity online code MATLAB software.

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (i.e. number of seats in classrooms and laboratories, extent of computer access, etc.)

1. Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)

- Lecture room for 10 students

2. Technology resources (AV, data show, Smart Board, software, etc.)

- Smartboard

- Computers for the software application.

3. Other resources (specify, e.g. if specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

1. Strategies for Obtaining Student Feedback on Effectiveness of Teaching

- Questioner giving to student through KSU-edugate at the end of the semester.

2. Other Strategies for Evaluation of Teaching by the Instructor or by the Department

- Last year evolution application filled by the chairman of the department.

3. Processes for Improvement of Teaching

- Updating the teacher knowledge by following up the new ideas through relevant data bases.

4. Processes for Verifying Standards of Student Achievement (e.g. check marking by an independent member teaching staff of a sample of student work, periodic exchange and remarking of tests or a sample of assignments with staff at another institution)

Department chairman will evaluate the final results of students.

5. Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

Name of Course Instructor:	REEM A B ALRADDADI
Signature:	Date Specification Completed: 8 Jan 2018
Program Coordinator:	
Signature:	Date Received: