Brief Course Description: STAT 324	
Course Designation	STAT 324
Course Name	PROBABILITY AND STATISTICS FOR
	ENGINEERS AND SCIENTISTS
No. of Credits	3 (2+1)
Prerequisites	None
Co - requisite Course	None
Credit Distribution	2+1
Course level	Fifth level
Teaching language	English
College(s) in which the course	College of Engineering - College of Computer
is offered	Science and Information - College of Planning
	and Construction
Main topics	Probability rules - Bayes rule - Random
(detailed contents are	variables - Discrete and continuous
enclosed)	distributions - Sampling distributions -
	Statistical inference:
	Estimation & Hypotheses Testing of one (two)
	population(s) mean(s) and one (two)
	population(s) proportion(s).
Course Objectives	The objectives of the course are to define and
	clarify the concept of both randomness in the
	data and the mathematical treatment for these
	data. Also, the mathematical models that
	describe different types of data are defined. In
	addition, the mechanism of decision making
	about the parametric values of simple models
	is given with special focus to the needs of the
	engineers and scientists.
Methods of teaching	Lectures, labs and home works.
Recommended book(s)	Probability and Statistics for Engineers and
	Scientists by R. E. WALPOLE and R.H.
	MYERS: Macmillan Publishing.
Main references	1- Introduction to Theory of Statistics by A.
	Mood, F. Graybill & B. Boes
	2- Mathematical Statistics by Steven Arnold
	3- Mathematical Statistics by Hogg & Craig
Method of course evaluation	Two mid-term exams, works, assignments
Tiret midtoms on a	and inial exam.
First inducerin exam.	Time: 90 minutes Date: week NO. 6 07 /.
Second midterm exam.	Class merils 50 Einclasses 50
Distribution of course scores	Class marks: 50 Final exam: 50
Duration of the final exam.	3 nours.
Date of the file accreditation	

The main topics	Probability:
(detailed	Sample space, events, counting sample points and
contents)	random events. Probability rules and additive rule.
	Conditional probability, multiplication rule and
	independent events. Total probability rule, Bayes'
	theorem.
	Random Variable:
	Discrete and continuous distributions. Mean and
	variance of a random variable. Mean of linear
	combination of random variables. Chebyshev's theorem.
	Some Probability Distributions:
	Uniform, Binomial, Hyper-geometric and Poisson
	distributions. Some of the common continuous
	distributions: Uniform, Exponential and Normal
	distributions. Applications of the normal distribution.
	Random Sampling:
	Some important sample statistics. Sampling distribution
	of the mean from normal distribution with known and
	unknown variance, t-distribution.
	Testime shiers
	Estimation:
	Statistical inference, classical estimation, estimation of
	a single population mean, point estimate, standard error
	of a point estimate. Estimating a confidence interval for:
	single population mean, the difference between two
	independent samples means, a single population
	proportion.
	Hypotheses Testing.
	Testing hypothesis about single population mean
	difference between two independent populations' means
	Testing hypothesis about single population propertion
	difference between two nonulations' proportions

Chairman of Department of Statistics and Operations Research

Name: Ahmad M. Alshamrani Signature: