

T-104 2022

Course Specification

Course Title: Solid State Physics

Course Code: PHYS 371

Program: B.Sc. in Physics

Department: Department of Physics and astronomy

College: College of Science

Institution: King Saud University

Version: 2.0.0

Last Revision Date: Sep 2023

Table of Contents:

Content	Page
A. General Information about the course	3
 Teaching mode (mark all that apply) Contact Hours (based on the academic semester) 	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Student Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and Equipment	6
F. Assessment of Course Qualit	7
G. Specification Approval Data	7

۹.	General infor	mation abou	t the	e course:		
Сс	ourse Identificati	on				
1.	Credit hours:	4(3+0+2)				
2.	Course type					
a.	University 🗆	College 🗆	De	partment⊠	Track□	Others□
b.	Required 🖂	Elective				
3. off	Level/year at wh ered:	nich this course	is	sixth level /third	d year.	
4.	Course general	Description				
the solid state. Concepts such as the reciprocal lattice vector and the Brillouin zone are introduced. In the second part, lattice vibrations are analyzed, and the dispersion relationship is introduced to understand how the lattice vibrates. The Debye and Einstein models for heat capacity are covered to explain how the lattice energy changes with temperature. Free electron Fermi gas model is introduced to explain electronic heat capacity and other electrical properties.						
5. Pre-requirements for this course (if any): 353phys						
6.	Co- requiremen	ts for this cours	se (if	any):		
 7. Course Main Objective(s) 1. explain the basic concepts of the structural and physical properties of materials. 2. recognize the main theories and laws of solid-state physics. 3. outline the crystal structure, reciprocal lattice and Brillouin zones, bonds in Crystals, free electron theory, phonons and lattice vibrations, thermal properties of insulators. 						

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	45	100%
2.	E-learning	0	0
3.	HybridTraditional classroomE-learning	0	0
4.	Distance learning	0	0

No	Activity	Contact Hours
1.	Lectures	42
2.	Laboratory/Studio	0
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0
	Total	42

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding			
1.1	demonstrate a knowledge and broad understanding for solid state concepts in crystal structure, direct and reciprocal space and crystal binding.	K1	• Give extensive examples during lecture.	• Hold Class discussion, tutorial sessions.
1.2	Explain thermal properties of phonons, heat capacity of phonons, Density of states and electrical and thermal conductivity.	К2	 Give problem sheets to be discussed during lecture 	 Give quizzes, mid-term exam and final exam.
2.0	Skills			
2.1	do quantitative calculations based on established theoretical models to describe the thermal properties of materials.	S1	 Give extensive examples during lecture Give problem 	• Hold Class discussion.
2.2	demonstrate solving problems related to solid state physics.	S2	 sheets to be discussed during lecture and labs. assignments. Discussions in the classes 	 Give Homework, mid-term exam and final exam.
3.0	Values, autonomy, and respon	sibility		
3.1	Write and present a short scientific paper on a published research work in solid state physics.	V1	Assignment	Group discussion and Presentation

C. Course Content No List of Topics **Contact Hours Crystal Structure:** 9 Definitions: lattice, basis, crystal structure, primitive lattice cell, volume of cell; Bravais lattice. 1. Fundamental types of lattices (2D and 3D types). index systems for crystal planes, Lattice Planes and Miller indices. Simple crystal structures, Hexagonal close-packed (hcp) Determination of crystal structure, reciprocal, and Bravais lattice: Determination of crystal structure: Bragg law, diffraction condition, Lau 8 • 2. condition. Bravais lattice, reciprocal lattice vectors, Lattice Planes and Miller indices, • **Brillouin zone Crystal binding and elastic constants:** 7 Energy calculations, the potential of energy function. • Covalent binding. • 3. • Ionic binding Metallic bonds • Hydrogen Bonds • **Phonon I:** Vibrations of Crystals with Monatomic Basis • First Brillouin Zone • Group Velocity, Long Wavelength Limit, normal modes **Phonon II: Thermal properties:** 7 **Phonon Heat Capacity** ٠ 4. • **Planck Distribution Density of States in One Dimension** • Density of States in Three Dimensions • • Debye Model for Density of States Debye T3 Law • Einstein Model of the Density of States. • • Thermal conductivity. **Energy bands:** Bloch theorem • 2 5. **Kronig-Penney model** • Metal and insulator. • Semiconductor: 2 6. Band gap, holes and electrons, effective mass. • • Homogenous and inhomogenous seminconductor. Free electron Fermi Gas: 7 Fermi-Dirac distribution, 7. • Energy levels, Heat capacity. • Electrical Conductivity and Ohm's Law. Thermal conductivity of metals.

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	First Midterm examination	Approx. 7	20%
2.	Second Midterm examination	Approx. 11	20%
3.	project	Approx.10	10%
4.	Homework	3-4 times	10%
4.	Final examination	From 16 to 18	40%

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities **1. References and Learning Resources**

Essential References	 "An Introduction to Solid States Physics", C. Kittle, 8th Edition, John Wiley & Son Inc (2005). The Oxford solid state basics, Steven H. and Simon, Oxford university press 2016
Supportive References	 "Solid State Physics, Ashcroft & Mermin", 1st Edition, Harcourt Asia Pte Ltd (1976). "Introduction to condensed matter Physics." Feng Duan & Jin Guojun, (World Scientific, 2005).
Electronic Materials	None
Other Learning Materials	Internet sites relevant to the course

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	A classroom which accommodates 25 students.
Technology equipment (projector, smart board, software)	Whiteboard and Smart board
Other equipment (depending on the nature of the specialty)	Not applicable

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students\ Peer Reviewer	Indirect \ direct
Effectiveness of students assessment	Students- Faculty	Direct
Quality of learning resources	students	Indirect
The extent to which CLOs have been achieved	Faculty	Indirect
Other	None	None

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE	Physics Department's council
REFERENCE NO.	8 th (1 st term/1445)
DATE	06/06/1445

