

T-104 2022

Course Specification

Course	l itle:	laser lab	

Course Code: PHYS 457

Program: B.Sc. in Physics

Department: Department of Physics and astronomy

College: College of Science

Institution: King Saud University

Version: 2.0.0

Last Revision Date: Sep 2023

Table of Contents:

Content	Page
A. General Information about the course	3
 Teaching mode (mark all that apply) Contact Hours (based on the academic semester) 	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Student Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and Equipment	7
F. Assessment of Course Qualit	7
G. Specification Approval Data	7

CC	ourse Identificati	on				
1.	Credit hours:	2(0+0+4)				
2.	Course type					
a.	University 🗆	College 🗆	Dep	partment⊠	Track	Others
b.	Required	Elective⊠				
3.	Level/year at wl	hich this course	e is	7 th level / four y	vear.	
off	ered:	Description				
4. The	Course general	Description	ubiocts			
THE	1. Fabry Perot Res	sonator	ubjects			
	2. Helium Neon la	ser				
	3. Pulsed diode la	ser				
	4. Spectral analysi	is				
	5. Measuring the	laser power or ener	rgy:			
6. Measuring beam diameter and divergence						
7. Emission and Absorption						
8. Laser range finder						
	9. Diode Pumped Nd:YAG Laser					

6. Co- requirements for this course (if any):

7. Course Main Objective(s)

- 1. The student should be able to acquire a good background about the basic concepts of laser radiation and its applications in different fields
- 2. The student should have experience on the concept of how lasers work and the principles of laser safety.
- 3. The student should have a preliminary experience on laser spectroscopic techniques.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	36	100%
2.	E-learning	0	0
3.	HybridTraditional classroomE-learning	0	0
4.	Distance learning	0	0

No	Activity	Contact Hours
1.	Lectures	0
2.	Laboratory/Studio	36
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0
	Total	36

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program		Teaching Strategies	Assessment Methods
1.0	Knowledge and unde	rstanding			
1.1	summarize experiments and applications in the laser field	K1	•	Give pre questions about different topics	• Hold Class discussion,
1.2	Recognizing knowledge of how lasers work and the principles of laser safety	K2	•	in laser and its applications. Give different experiments include different topic of laser	 tutorial sessions. Give quizzes, mid-term exam and final exam.
2.0	Skills				
2.1	record a preliminary experience on laser spectroscopic techniques	S1	•	Work in	• Hold Class discussion, tutorial and lab
2.2	perform experiments related to laser field	S 2		different experiments in laser	sessions. Give quizzes, mid-term exam and final exam.
3.0	Values, autonomy, ar	nd responsibility			
3.1	Write scientific reports on different experiments	V1	•	Write different lab reports	Hold Class discussion

C. C	Course Content	
No	List of Topics	Contact Hours
1.	 Fabry Perot Resonator Measurement of the Free Spectral Range (FSR) Measurement of the finesse Mode spectrum The plane mirror Fabry Perot 	4
2.	 The optical stability range The optical output as a function of the position of the laser tube inside the resonator The measurement of the beam radii path inside the resonator. 	4
3.	 Pulsed diode laser Measuring the repetition rate and the pulse width the spatial intensity distribution and determine a three- dimensional plot of the emission cross section Analyzing the polarization properties Collimating the divergent radiation beam 	4
4.	 Spectral analysis Investigation of the principle of gratings Principles of spectrograph and Czerny-Turner monochromator Investigation of a spectral lamp and line spectrum 	4
5.	 Measuring the laser power or energy: To measure the laser power and energy (two types of lasers). To observe the character of laser (Frequency, width beam of laser, voltage) To measure width of beam laser Vs output laser power or energy at different point at least 10 points. To measure voltage of laser Vs output laser power or energy at different point at least 10 points. 	4
6.	 Measuring beam diameter and divergence Determine Spot size of beam laser (DIMO (diode laser module, 532 nm) and measure Divergence Angle. 	4

	Total	36
9.	Diode Pumped Nd:YAG Laser	4
8.	 Laser range finder Investigate the optical spectra of LED and laser light sources Investigate other properties of these sources like polarization and spatial emittance 	4
7	 Emission and Absorption Measuring the absorption and wavelength of the laser diode Measuring Absorption spectrum Measuring Wavelength and temperature dependence Wavelength and temperature dependence 	4
	 Measured the distribution of the intensity of the scattered probe using a sensor connected with the Digital multi-meter at different degrees. Measured the density of beam laser of CW after put different filters and compared with density before put it. 	

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Experiments reports	Approx. 9	40%
2.	Final theoretical exam	1 week	20%
3.	Final Practical exam	1 week	40%

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities **1. References and Learning Resources**

Essential References	The Physics of Atoms and Molecules: Introduction to Experiments and Theory, W. D. Brewer, Springer, 7th edition 2005 -Special Experiment sheets for Laser experiments.
Supportive References	

Electronic Materials Other Learning Materials

None

Internet sites relevant to the course

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	A classroom which accommodates 25 students.
Technology equipment (projector, smart board, software)	Whiteboard and Smart board
Other equipment (depending on the nature of the specialty)	Not applicable

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students\ Peer Reviewer	Indirect \ direct
Effectiveness of students assessment	Students- Faculty	Direct
Quality of learning resources	students	Indirect
The extent to which CLOs have been achieved	Faculty	Indirect
Other	None	None

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE	Physics Department's council
REFERENCE NO.	9 ^h (1 st term/1445)
DATE	16/06/1445

