

T-476 2022

Course Specification

Course Title: Introduction to Nanoscience and Nanotechnology

Course Code: PHYS 476

Program: B.Sc. in Physics

Department: Department of Physics and astronomy

College: College of Science

Institution: King Saud University

Version: 2.0.0

Last Revision Date: Sep 2023

Table of Contents:

Content	Page		
A. General Information about the course	3		
 Teaching mode (mark all that apply) Contact Hours (based on the academic semester) 	3		
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4		
C. Course Content	5		
D. Student Assessment Activities			
E. Learning Resources and Facilities			
1. References and Learning Resources			
2. Required Facilities and Equipment	6		
F. Assessment of Course Qualit	7		
G. Specification Approval Data	7		

A. General information about the course:

Со	Course Identification					
1.	Credit hours:	2(2+0+0)				
2. (Course type					
a.	University \Box	College 🗆	Dej	partment⊠	Track□	Others□
b.	Required 🖂	Elective				
3.	Level/year at wl	nich this course	is	8 th level		
off	ered:					
4. (Course general	Description				
Provides an introduction to Nanoscience and Nanotechnology. The student learns the basic,						
con	cepts and the main	rules of nanoscience	e in phy	ysics and technolog	gy.	
5. Pre-requirements for this course (if any):						
6. Co- requirements for this course (if any): PHYS 473						
 7. Course Main Objective(s) The student will be able to express on the basic physical knowledge on Nanotechnology, including the effects of quantum confinement on the energy levels and 						

density of states .

• The student will understand the available tools for fabrication and characterization of nanostructures.

• The student will catch up with developments and applications in this rapidly evolving area.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	75	100%
2.	E-learning	0	0
3.	HybridTraditional classroomE-learning	0	0
4.	Distance learning	0	0

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	0
3.	Field	0
4.	Tutorial	0
5.	Others (specify)	0

30

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Total

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and unde	rstanding		
1.1	demonstrate a knowledge and broad understanding for nanoscience concepts.	K1	• Give extensive examples during lecture.	Hold Class discussion, tutorial
1.2	Understand the observable physics phenomena that are due to quantum size effects in nanoscale materials.	К2	 Give problem sheets to be discussed during lecture 	 Give quizzes, mid-term exam and final exam.
2.0	Skills			
2.1	Correlate the chemical and physical structure with mechanical, electrical and optical properties of nanomaterials.	S1	Give extensive	
2.2	Describe the operating principle, and the experimental limitations, of some of the common analytic tools of nanotechnology.	S2	 examples during lecture Give problem sheets to be discussed during lecture and labs. assignments. Discussions in 	 Hold Class discussion, tutorial and lab sessions. Give quizzes, mid-term avam and
2.3	Produce scientific reports and present them in writing and oral form for selected topics in nanoscience characterization and fabrication.	\$3	 Discussions in the classes 	exam and final exam.
3.0	Values, autonomy, ar	nd responsibility		
3.1	Work in a team and acknowledge others' work.	V1	assignments.Homework	Hold Class discussion

C. Course Content

No	List of Topics	Contact Hours
	Introduction	2
1.	scaling laws and limits to smallness	
	quantum nature of nano-world	
	Methods of Measuring Properties	6
	Structure (Atomic Structures, Crystallography, Particle Size Determination, Surface Structure)	
2.	Microscopy (Transmission Electron Microscopy, Scanning Microscopy)	
	Spectroscopy (Magnetic Resonance, Infrared and Raman Spectroscopy, Photoemission and X-Ray Spectroscopy)	
	Properties of Individual Nanoparticles	
3.	Metal Nanoclusters (Magic Numbers, Geometric Structure, Electronic Structure, Magnetic Clusters)	4
	Carbon Nanostructures	6
	Carbon Molecules (Nature of the Carbon Bond)	
4.	Carbon Clusters (Small Carbon Clusters, Structure of c60 and Its Crystal, Superconductivity in C60).	
т.	Carbon Nanotubes (Fabrication, Structure, Electrical Properties, Vibrational Properties, Mechanical Properties) Applications of Carbon Nanotubes (Computers, Fuel Cells, Chemical Sensors, Catalysis)	
	Nanostructured Ferromagnetism	
	Basics of Ferromagnetism	
5.	Effect of Bulk Nano-structuring of Magnetic Properties	4
	Dynamics of Nanomagnets	
	Quantum Wells, Wires, and Dots	6
	Preparation of Quantum Nanostructures	
6.	Size and Dimensionality Effects	
	Excitons Applications (Infrared Detectors, Quantum Dot Lasers)	
7.	Nanomachines and Nanodevices	4

Microelectromechanical Nanoelectromechanical Nanodevices and Nanon	l Systems (MEMSs) Systems (NEMSs) (Fabrication, nachines)	
 Nanofabrication Technology Microcontact Printing Physical Vapor Deposit 8. Sputtering Metal Evaporation Chemical Vapor Deposit Photolithography 	niques ion ition	4
	Total	36

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	First Midterm examination	Approx. 6	20%
2.	Second Midterm examination	Approx. 12	20%
3.	Quizzes Discussion	Weekly	20%
4.	Final examination	From 16 to 18	40%

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential Poforoncos	INTRODUCTION TO NANOTECHNOLOGY
Losential References	Charles P. Poole, Jr. and Frank J. Owens. USA.2003.
Supportive References	Basic Principles of Nanotechnology
Supportive References	Wesley C. Sanders. 2019. by Taylor & Francis Group.
Electronic Materials	None
Other Learning Materials	Internet sites relevant to the course

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	A classroom which accommodates 25 students.

Items	Resources
Technology equipment (projector, smart board, software)	Whiteboard and Smart board
Other equipment (depending on the nature of the specialty)	Not applicable

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students\ Peer Reviewer	Indirect \ direct
Effectiveness of students assessment	Students- Faculty	Direct
Quality of learning resources	students	Indirect
The extent to which CLOs have been achieved	Faculty	Indirect
Other	None	None

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE	Physics Department's council
REFERENCE NO.	11 th meeting (2 nd term 1445)
DATE	04/08/1445

