Sorry, you need to enable JavaScript to visit this website.
Skip to main content

COURSES DESCRIPTION (New)

 

COURSES OF THE NEW PHYSICS PROGRAM

 

 

1st Semester  

ENG 104: English Language   6(6+0+0) 
MATH 101: Differential Calculus   3(3+0+0)
ENT 101: Entrepreneurship   1(1+0+0) 
CHEM 101: General Chemistry   4(4+0+0) 
 ARAB 100: Written Skills   2(2+0+0)

                                     

                                                   

2nd Semester 

ENG 111: Academic English Language   6(6+0+0) 
CI 101: University skills  3(3+0+0) 
CT 101: Computer Skills   3(3+0+0) 
CHS 101: Fitness and healthy culture   1(1+0+0) 

                                   

                                                       

3rd Semester

PHYS 110: General Physics I    4(3+0+2)               Course Description               Course Specification           
Units and dimensions, Introduction to vectors, Motion in straight line, Newton’s Laws of motion, work, energy and momentum, simple harmonic motion, elasticity, mechanics of non-viscous fluids, flow of viscous fluids, surface tension, temperature, quantity of heat, work, heat and Newton’s law of Cooling .

 

PHYS 111: General Physics II    4(3+0+2)               Course Description               Course Specification

The course will provide an overview of topics in general physics: electricity, optics and e.m. radiation.

 

MATH 111: Methods of Integration    4(3+2+0)            Course Description             Course Specification        

Definition of Definite Integral and its Properties, The Anti-derivative, Indefinite Integral and the Fundamental Theorem of Calculus. Change of Variables. Integrals of natural and general exponential functions. Integrals of natural and general Logarithmic functions. Derivatives and Integrals of Hyperbolic and Inverse-Hyperbolic functions. Techniques of Integration: by parts, Trigonometric substitutions, Completing the square, Integrals of rational functions, Miscellaneous Substitutions. Indeterminate forms, Improper Integrals. Applications of Integration: Area, Solids of Revolutions, Arc length and Surface of Revolution, Linear Motion, Work, Momentum and Center of Mass. Numerical Integration. Polar coordinates, relation between polar and Cartesian coordinates, Graphs of polar curves, Area in polar coordinates. Parametric Equations.

 

ASTR 102: Introduction to Stellar and Solar System   3(2+0+2)   Course Description    Course Specification   

Basic  and modern concepts of Astronomy – Units of astronomical distances – Historical Astronomy in Islamic culture- Telescopes- Kepler's laws - The Solar System - Earth and Moon- The Terrestrial planets - The Jovian Planets –Asteroids and Comets. Origin of the solar system - The Sun – stars: apparent and absolute magnitude, color index, distances and velocities of stars.

 

 

4th Semester

PHYS 201: Mathematical Physics I    3(2+2+0)            Course Description            Course Specification

Systems of Linear Equations and matrices, Determinants, Vectors in 2D and 3D, Applications to Physics: Angular momentum, moment of inertia, Torque, and the electromagnetic force, Vector spaces, Inner product spaces, Eigenvalues, eigenvectors, and diagonalization, and linear transformations, Applications to physics: Eigenvalue problem in classical mechanics and simple examples in quantum physics.

 

MATH 209: Differential Equation    3(3+0+0)               Course Description               Course Specification         
Study of the Animal mechanics, properties of fluids, heat and heat flow in biological systems, nature of sound and sound intensity, applications on sound hearing, echolocation, use of ultrasound in medicine, nature of light, applications on image formation, resolution of eye, mechanism of vision, color vision, biological effects of UV and visible radiation, radiation biophysics, radiation dose and its measurement, RBE multi target theory, use of lasers in medicine.

 

PHYS 212: Classical Mechanics I     3(3+0+0)         Course Description            Course Specification

Motion in one and two dimensions, Newtonian laws and Friction, Circular Motion, Linear and Angular Momentum, Elastic and Inelastic Collisions, Equilibrium, Rigid body Dynamics, Moment of Inertia, Simple Harmonic Motion, Gravitation and Kepler's Laws.

 

PHYS 221: Electromagnetism I      3(3+0+0)          Course Description            Course Specification
Electrostatics, Gauss Law and its application, Capacitors, the magnetic field of conductors with different shapes, Ampere’s law and its applications. Induced electromotive force, Faraday’s law. Lenz’s law, magnetic properties of matter, analysis of AC circuits, resonance in series and parallel circuits.

 

PHYS 230: Vibrations and Waves    3(3+0+0)              Course Description            Course Specification

Periodic motion. Free Vibrations, mathematical and Fourier analysis. Super position of periodic motion. Sound, plasma, molecular and electrical circuit oscillations analysis. Damped vibrations, heavy light and critical damping. Forced Vibrations. Superposition. Transients. Resonance circuits. Waves: travelling, standing, dispersive and nondispersive. Fourier Theory.

 

 

5th Semester

PHYS 241: Thermal physics        3(3+0+0)                 Course Description               Course Specification

General definitions and basic concepts of thermal Physics‐ thermal equilibrium and temperature‐The zeroth law of thermodynamics:

‐The first law of thermodynamics (heat and work, internal energy function, reversible and irreversible thermal processes in ideal and real gases isochoric and isobaric processes, adiabatic processes, Carnot cycle and thermodynamic performance, Otto and Diesel thermal engines, refrigerators).

‐The second law of thermodynamics (Entropy function and its various applications in thermal systems)‐The third law of thermodynamics‐Phase transformations‐Free energy‐The thermodynamic functions U, H, S, F and G‐The Maxwell relations.

 

PHYS 312: Classical Mechanics II    3(3+0+0)               Course Description               Course Specification
Energy and Momentum: Conservative forces, Moments, central forces, calculus of variation.
Central conservative forces: Inverse squarelaw, orbits, gravitational potential.
Non-inertial reference frames and inertial forces.
Two- and Three body systems.
Rigid bodies: rotation about axes, effects of small forces.
Lagrangian mechanics: action, principle of least action, generalized coordinates, Lagrange equations.
Hamiltonian mechanics: Hamilton’s equations of motion, Liouville’s theorem.
Small oscillations: orthogonal coordinates, normal modes, and coupled oscillators.

 

PHYS 323: Electromagnetism (2)       3(3+0+0)                 Course Description            Course Specification
This course builds up on 221 phys in order to establish the theoretical grounds of electromagnetism. The course covers the concept of vector: gradient, divergence, and curl. Stock’s and Green’s theorems. electrostatics in free space, conductors and dielectric materials. It also covers Ampere’s law and the magnetic field, Maxwell equations in differential and integral forms, and in tensor form. It also covers solutions to Maxwell equations in vacuum and the propagation of electromagnetic radiation.  The course covers the so‐called 4‐vector notation and the compatibility of Maxwell equations with special relativity. It also introduces gauge transformations.

 

PHYS 331: Optics    3(3+0+0)                  Course Description               Course Specification
Wave’s theory of light: wave equation, sinusoidal waves, phase velocity, complex representation, and plane waves. Superposition of waves: superposition principle, superposition of waves of the same frequency, standing waves, phase and group velocities, energy and power, random and coherent Sources. Interference: two-beam interference, Young's double-slit experiment, double-slit interference with virtual sources, interference in dielectric films, Newton's Rings. Optical Interferometers: Michelson, and Fabry-Perot interferometer. Polarization: Linear, circular, and elliptical polarization, production of polarized light, double refraction (birefringence), optical activity, and photo elasticity. Diffraction of light: types of diffraction, Fraunhofer diffraction by single slit, by double slit, and by many slits, rectangular and circular apertures, beam spreading, and resolution. Diffraction grating, grating equation, dispersion, types of grating and grating instruments.

 

PHYS 353: Modern Physics I    3(3+0+0)                       Course Description               Course Specification

Galileo transformations, Michaelson-Morley experiment, Postulates of special relativity, Lorentz transformations, relativity of space and time, relativistic collisions.
Particle‐like properties and radiation: The photoelectric effect, Black body, Compton effect.
The wave‐like properties of matter: De Broglie waves, the uncertainty principle, wave packets.
Probabilities and randomness.
Wave behavior when crossing boundaries, confining particles, the one‐dimensional Schrodinger equation, applications of Schrodinger equation: the harmonic oscillator, steps and barriers.
Overview of the basic properties of the atom, Thomson model, Rutherford experiment, line spectra, Bohr model.

Atom in one‐dimension, Angular momentum, Spin, Zeeman effect.

 

PHYS 394: Electromagnetism lab     2(0+0+4)           Course Description                  Course Specification

Experiments Will Be Performed By The Students:

Milikan experiment, Resonance in RCL services circuits, Full wave rectification, Determination of magnetic field intensity using the search coil, Determination of the charge to mass ratio for the electron (e/m), Determination of dielectric constant using RCL resonance circuit. Transformers.

 

 

6th Semester

PHYS 301: Mathematical Physics II      3(2+2+0)            Course Description            Course Specification
Complex numbers; Complex Analytic Functions; Power Series (Taylor Series, Laurent Series); Complex Integrals; Contour Integration by the Method of residues; Applications to Physics: complex wave solutions in oscillations and waves. And complex plane wave functions solutions to one‐dimensional time independent Schrödinger Equation.

 

PHYS 325: Electronics          3(2+0+2)                   Course Description                 Course Specification
Semiconductors, semiconductor doping, the p-n junction properties and applications, the diode, the bipolar transistor, signal amplification, the field effect transistor, Circuit symbols and components, Semiconductor devices, Amplifier operation, feedback. Lock-in operational amplifiers and applications, modulation and detection, integrated circuits. A brief introduction to digital electronics and analog to digital (A/D) conversion.

 

PHYS 342: Statistical Physics  3(3+0+0)            Course Description               Course Specification
Equipartition of energy: equipartition theorem, Brownian motion.
The partition function: Its expression, the function of state, combining partition functions.
Statistical mechanics of ideal gases: Density of states, quantum concentration, distinguishability, functions of states of ideal gases, Gibbs paradox, heat capacity of a diatomic gas.
Chemical potential: definition, grand partition function, relation to Gibbs function, particle number conservation.
Photons: radiation pressure, statistical mechanics of a gas of photons, Black body distribution.
Phonons: the Einstein model, the Debye model.
Overview of: real gases, phase transitions, Bose-Einstein and Fermi-Dirac distributions, and quantum gases.

 

PHYS 371: Solid State Physics I    3(3+0+0)         Course Description            Course Specification

Definition of the Solid State and Crystal Growth, Crystalline Amorphous and Nano solids, Atomic Binding, Crystal Lattices and Structures, Miller indices Elastic Constants, Crystal Defects, Fourier Analysis of Periodic Structures, Reciprocal Lattice, X-ray Diffraction, Brillouin Zones, Lattice Vibrations and Phonons, Thermal properties of Solids, Einstein and Debye Models of Heat Capacity, Phonon Density of States, Planck Distribution. Free Electron (Fermi gas) model, Electron Density of States, Electrical, thermal and optical properties of the Electron Gas.

 

PHYS 391: Thermodynamics lab     2(0+0+4)             Course Description               Course Specification

Experiments Will Be Performed By The Students:

Specific Heat – longitudinal expansion – Joule’s Law (The mechanical equivalent of heat) – Boyle’s Law - Newton's law of cooling – Viscosity - Heat Engine - Carnot Engine - Heat TransferDetermination of density and expansion of fluids.

 

PHYS 393:  Modern Physics lab     2(0+0+4)             Course Description          Course Specification

Experiments will be performed by the students:

Michelson interferometer, Fabry-Perot interferometer, Laser Diffraction in Ultrasonic phase grating.  Electro-optic Kerr-Effect, Magneto-optic Faraday Effect.  Measurement of Line Spectra using Spectrograph.  Rydberg Constant measurement.  Determination of Planck’s constant, Zeeman Effect.  Franck-Hertz experiment.  Study X-ray spectrum.  Characteristics of Microwaves.

 

PHYS 395: Waves Physics lab     2(0+0+4)                Course Description                 Course Specification

Experiments Will Be Performed By The Students:

Young's double slit experiment- Measuring the Effect of Sugar Concentration on the Refractive Index by using Abbe refractometer- Verification of inverse square law and measure the absorption coefficient of light in the glass using photovoltaic cell- Determine specific rotation using the Polarimeter - Newton’s Rings in Transmitted Monochromatic Light- Lloyd’s mirror experiment- Interference at a Fresnel’s biprism- Measurement of the Refractive Index of a Prism by spectrometer- Measuring wavelengths with a diffraction grating- Melde’s Experiment.

 

 

7th Semester

PHYS 396: Modern Physics lab     2(0+0+4)              Course Description               Course Specification

Experiments Will Be Performed By The Students:

Michelson interferometer, Fabry-Perot interferometer, Laser Diffraction in Ultrasonic phase grating. Electro-optic Kerr-Effect, Magneto-optic Faraday Effect. Measurement of Line Spectra using Spectrograph. Rydberg Constant measurement. Determination of Planck’s constant, Zeeman Effect. Franck-Hertz experiment. Study X-ray spectrum. Characteristics of Microwaves.

 

PHYS 400: Computational Physics (E)     2(1+0+2)          Course Description              Course Specification

1. Introduction:The need for computers in science, What is computational physics?, Operating systems and programming languages.
2. Interpolation: Lagrange interpolation, Neville's algorithm, Linear interpolation, Polynomial interpolation, Cubic spline, Rational function interpolation.
3. Numerical differentiation: Forward difference, Central difference and higher order methods, Higher order derivatives.
4. Numerical Integration: Rectangular method, Trapezoid method, Simpson method.
5. Solution of nonlinear equations:Bisection method, Newton's method, Method of secants, Brute force method.
6. Differential equations: Euler method, Numerical errors and instabilities, Runge-Kutta method.
7. Monte-Carlo methods: Random number generators, Distribution functions, Acceptance and rejection method, Inversion method.

 

PHYS 404: Mathematical Physics (3)    3(3+0+0)             Course Description               Course Specification

Special functions and their applications in physics: Gamma and beta functions, Legendre special functions and their application in electrostatics. Associated Legendre functions and applications in magnetostatics and nuclear
physics. Spherical harmonics and applications in quantum mechanics. Bessel functions of all types and their applications in the wave mechanics, electrodynamics and quantum mechanics. Laguerre and Associated Laguerre functions and applications in quantum mechanics. Hermite functions and their applications in solving the quantum harmonic oscillator. Fourier series, transformations and integrals and their applications in the physics of waves (wave equation). Laplace transformations, and their application in the physics of waves, heat transfer (heat equation).

 

PHYS 452: Quantum Mechanics     3(3+0+0)            Course Description               Course Specification

The wave function, The statistical interpretation of the wavefunction, operators, expectation values, the uncertainty principle. Time-dependent Schrodinger equation. Time-independent Schrodinger equation, binding potentials, free potentials, the quantum harmonic oscillator. Hilbert space, Eigenvalue problems, Dirac notation. Quantum mechanics in three dimensions, Hydrogen atom, spin and angular momentum

 

PHYS 481: Nuclear Physics I    3(3+0+0)                  Course Description               Course Specification

- Properties of the nucleus: Isotopes, nuclear binding energy, angular momentum, nuclear electromagnetic moments, nuclear forces.

- Radioactivity: Decay law (τ, t1/2), natural radioactivity, successive decay, artificial  radioactivity basic  α – decay  process,  β-decays and  γ-transitions.

- Nuclear reactions: Q-value, threshold energy (Eth), Internal Conversion, Decay Schemes.

- Interaction of radiation with matter: Interaction of heavy (α, p, d) and light (e¯, e+), charged  particles with matter, stopping power, interaction of gamma radiation with matter (Photoelectric, Compton and pair production).

 -Binding energy and the liquid drop model.

 

PHYS 490: Research skills     2(0+0+4)                Course Description               Course Specification

Types of scientific research, ethics in research, how to establish a research topic, how to use scientific resources, e.g., databases and scientific journals - citation methods - training on some scientific programs and equipments which are available in the College of Science- methods of writing and reading scientific articles and reports - training on presentation and poster skills.

 

 

8th Semester

PHYS 491: Laboratory of solid state     2(0+0+4)         Course Description               Course Specification

Experiments Will Be Performed By The Students:

X-Ray diffraction, Dielectric constant, Hall effect, Magnetic Succipility, Magnetic Resonance, Solar Cells, Energy gap for semiconductors, Noble metal resistance, Electron diffraction, Photoelectric effect.  Optical absorption of solids and solids with defects and nano inclusions.

 

PHYS 492: Nuclear Physics lab     2(0+0+4)            Course Description               Course Specification

Experiments Will Be Performed By The Students:

characteristics of Geiger Counter, Absorption of nuclear radiation, Counting statistics, Detection of Gamma ray

Spectroscopy using NaI (Tl) and SCA, Detection of Gamma Ray Spectroscopy using NaI (Tl) and MCA,

Determination of half-life time for radioactive element, Study of β-Ray Spectrum using Magnetic

Spectrometer, Study of β-Ray Spectrum using MCA, Neutron Diffusion, Study of alpha particle Spectra, Compton scattering.

 

PHYS 499: Research Project     3(0+0+6)             Course Description               Course Specification
The principle goal of the course is to guide the student to perform scientific project in a selected area, theoretical or experimental Physics and Astronomy, and to train her/him to write a scientific report using the necessary references. 

 

 

 

 

 

List of Elective Courses

(List A): Student chooses 2 courses (6 credit hours) 

PHYS 435: Laser Physics    3(3+0+0)                Course Description               Course Specification
Absorption and emission of light, Einstein Relations, Population inversion, Gain coefficient, Optical cavity, Modes of laser cavity. Solid-state lasers, Semiconductor lasers, Gas Lasers, Dye lasers, Free electron laser and some new lasers. Laser beam properties: Laser Line width, Beam Divergence, Coherence, Brightness, Focusing properties of laser, Q-Switching, Frequency Doubling, Phase Conjugation. Laser Applications: Medical application, Industrial application, Military application, Scientific application, Holography and communications.

 

PHYS 460: Biophysics         3(3+0+0)               Course Description               Course Specification

Biomechanics. Forces affects on our bodies. Vector analysis. Levers and equilibrium of rigid bodies. Stress - Strain curve.  Young's and Shear modulus for materials and biological tissues. Properties of fluids. Viscosity and surface tension. Bernoulli's equation and its applications.  Effect of gravity and acceleration on the blood pressure. Nature of sound and sound intensity level. Ultrasound, production and its applications in diagnostic and treatment.  Nervous System and electricity within the body. Equilibrium potential and Nernst equation. Factors affecting the propagation of action potential. Action potential measurements of some organs; ECG, EEG and ERG.  Non-ionizing Radiation. Physical and biological effects.

 

 PHYS 477: Energy & Environment Physics     3(3+0+0)         Course Description           Course Specification
Energy fundamentals, Fossil fuels, Renewable energy Part-I: Solar radiation and solar energy (thermal, photovoltaics and electrochemicals), Renewable energy Part-II: Alternatives (hydropower, wind power, ocean thermal energy conversion, biomass, geothermal energy, tidal & wave energy), Energy conservation & storage, Energy and transportation, air pollution and environment.

 

PHYS 478: Material Science        3(3+0+0)              Course Description               Course Specification
States of matter (liquid, crystalline & vitreous); Crystal structure of metals; Metallography (reflecting optical microscope, transmission electron - microscope)  specimen preparations;  Mechanical testing (hardness & tensile test); Defects in crystals (point defects and dislocations); Diffusion in solids; (Phase transformation and Phase diagrams) Strengthening mechanisms (alloying, cold work, precipitation & fiber strengthening); Heat treatment of steel & TTT curves.

 

(List B): Student chooses 2 courses (4 credit hours)

PHYS 411: Astrophysics I    2(2+0+0)              Course Description               Course Specification

Stars: magnitude – luminosity – introduction to spectra – stellar spectra – stellar parallax-  stellar velocities- HR diagram – binary stars and stellar masses – star formation – series of stellar nuclear reactions and stellar ages- stellar evolution and structure.

 

PHYS 412: Astrophysics II    2(2+0+0)              Course Description               Course Specification
Interstellar matter (ISM): distribution and structure- Physics of ISM – HI and HII regions – Interstellar clouds – Star formation –  Chemical properties and evolution of Galaxies– Planetary nebulae.

 

PHYS 423: Semiconductor Physics    2(2+0+0)            Course Description               Course Specification
Introduction to semiconductor materials, Elemental and compound semiconductors, Intrinsic and extrinsic semiconductors, electronic properties of semiconductors Carrier transport phenomena, optical processes in semiconductors, theory of p-n junctions, Ideal current-voltage characteristics, Metal-Semiconductor contact, Schottky barriers and Ohmic contacts, Semiconductor heterojunctions.

 

PHYS 456: Atomic and Molecular Spectroscopy   2(2+0+0)     Course Description       Course Specification
Spin - Orbit Interaction in H-atom, Pauli Exclusion Principle. Electron configuration in many electron atoms, Atoms with a valance electron , Atoms with two valance electrons (ℓℓ coupling, ss coupling , LS coupling and jj coupling),  Hund’s Rule . The interaction of many-electron atoms with magnetic fields, Zeeman Effect, Pachen-Bach Effect, Stark Effect. Molecular Structure, Electronic, vibrational and rotational energy levels of a diatomic molecule. Spectroscopic techniques: Optical spectroscopy , IR spectroscopy, Raman spectroscopy, Magnetic Resonance , Excitation Sources, and data acquisition systems.

 

PHYS 457: laser Lab.        2(0+0+4)               Course Description               Course Specification
Laser Safety, Coherence Length, Analysis of Gaussian Beam, Laser Cavity Design, Laser Modes Structure, Dye absorption and emission Spectra, Fourier Optics, Fiber Optics, Second Harmonic Generation, Fresnel Equations.

 

PHYS 462: Medical Physics        2(2+0+0)               Course Description               Course Specification

- Introduction to Medical Physics, Electromagnetic Spectrum and Radiation, Interactions of ionizing and non-Ionizing Radiation with biological matter.

-Radiological Imaging: Introduction to Imaging, Conventional X-ray imaging, Computed Tomography, Diagnostic Ultrasound.

-Radiation Therapy: Introduction to Radiotherapy Physics, Linear Accelerators, Introduction to treatment Planning, Brachytherapy, Machine calibration and quality  assurance.

 -Magnetic Resonance Imaging: Introduction, Basic NMR Physics, MR Imaging Principles, Medical Applications.

- Nuclear Medicine: Introduction, Isotopes, PET scan.

 

 

PHYS 463: Solid State Physics II        2(2+0+0)              Course Description               Course Specification
Fermi surfaces, Energy levels in one dimension, Energy bands, Energy band gap calculations, Electrical transport theory, Hall effect. Theory and applications of bands and carriers in semiconductors and devices. Magnetism in solids and superconductivity. Interaction of solids with radiations.

 

PHYS 476: Introduction to Nanoscience and Nanotechnology  2(2+0+0)  Course Description    Course Specification

Introduction to nanophysics and nanotechnology – scaling laws and limits to smallness; quantum nature of nanoworld; nano fabrication (top-down and bottom-up process); nanoscopy (electron microscopy, atomic force microscopy, scanning tunneling microscopy).

Properties and application of dielectric and metal nanostructures - individual nanoparticles and nanoclusters; nanostructured materials; carbon nanostructures; nano spin and nanomagnets.

Properties and application of semiconductor nanostructures - fabrication of semiconductor nanowires and quantum dots; electronic and optical properties (2D and 3D quantum confinement); optical spectroscopy of semiconductor nanostructures (local probe techniques); quantum dots nanowire- and quantum-dot-based electronic and photonic devices.

 

 

PHYS 480: Elementary Particle Physics        2(2+0+0)         Course Description          Course Specification
Elementary particles and their discovery. Leptons and quarks and their physical properties. The fundamental forces of Nature. The strong nuclear force, the weak nuclear force, the electromagnetic force, and the gravitational force, and their carriers: the gluon, W plus and minus and Z, and the photon. Four-vector notation in special relativity, relativistic collisions. Symmetries that govern elementary particle interactions, Fermi’s golden rule, Quantum chromodynamics and Feynman diagrams.

 

PHYS 483: Nuclear Physics II     2(2+0+0)               Course Description               Course Specification

-Nuclear properties of the Deuteron.

-Nuclear models: nuclear shell model, Collective model.

-Nuclear reactions: nuclear scattering, compound nucleus.

-Introductory to elementary particle Physics. 

 

PHYS 485: Accelerator Physics     2(2+0+0)                Course Description               Course Specification
Comprehensive introduction to the Physics of the charged particle beams and modern particle accelerators. Basic components of accelerator.  Various types of accelerators including electrostatic accelerators, induction linear accelerators, linear radio-frequency (RF) accelerators, and various circular accelerators such cyclotrons, synchrotrons, charged particle in electromagnetic fields, beam acceleration and phase stability. Applications of accelerators.

 

PHYS 486: Radiation Physics     2(2+0+0)                Course Description               Course Specification
Definition of radiation quantities ,doses and their units, instruments for measuring personal doses, radiation monitoring and radioactive contamination, biological effects of radiation, external and internal radiation exposure, radiation protection and shielding, protection against different radiation sources,  radioactive waste management.

 

PHYS 488: Nuclear Reactor Physics     2(2+0+0)            Course Description             Course Specification

- Neutron reactions: cross-sections, attenuation, reaction rate, fission cross-section.

- Nuclear fission, fission yield, Energy distribution among fission neutrons and fragments,  re-production factor.

-Thermal neutrons: energy distribution, effective cross section, moderation, average energy loss, Average energy logarithmic decrement, SDP, MR and resonance escape probability.

-The Nuclear chain reaction: neutron cycle, thermal utilization factor and calculating the four factors formula.

 

 

(List C): University Requirement: Student chooses 4 courses (8 credit hours)

IC 100: Studies in the Biography of the Prophet   2(2+0+0)  Course Description    Course Specification        

 

 

IC 101: Introduction of Islamic Culture   2(2+0+0)        Course Description         Course Specification        
 

 

IC 102: Islam and Building up the Society   2(2+0+0)      Course Description        Course Specification        
 

 

IC 103: Economic System in Islam   2(2+0+0)           Course Description             Course Specification        
 

 

IC 104: Political System in Islam   2(2+0+0)           Course Description             Course Specification        
 

 

IC 105: Human Rights   2(2+0+0)                Course Description                  Course Specification        
 

 

IC 106: Islamic Jurisprudence   2(2+0+0)             Course Description             Course Specification        
 

 

IC 107: Ethics of Occupation   2(2+0+0)           Course Description             Course Specification        
 

 

IC 108: Contemporary Issues   2(2+0+0)           Course Description             Course Specification        
 

 

IC 109: Woman and Her Developmental Role    2(2+0+0)    Course Description      Course Specification        
 

 

 

Last updated on : January 12, 2023 4:03am